

MiniBooNE

Hirohisa A. Tanaka Princeton University

Weak Interactions and Neutrinos Workshop 2003 (Lake Geneva, WI)

Overview:

BooNE: Booster Neutrino Experiment

- The Beam
- The Detector and Calibration Devices
- Beam Data
- Conclusions

See Andrew Bazarko's talk for oscillation discussion

BooNE is for Booster:

The Fermilab Booster:

8 GeV protron synchrotron

Provides protons for:

- MiniBooNE
- Main Injector Antiprotons, Tevatron 120 GeV Fixed Target, NuMI

MiniBooNE beamline

- $1.6 \ \mu \text{sec}$ p batch on Be
- Electromagnetic Horn (+) Focus 2ndary particles
- 50 m decay region $\pi^+ \rightarrow \mu^+ \nu_{\mu}$

THE BOOSTER ACCELERATOR Since May, 1971, the Booster Accelerator has taken 200 million electron volt protons from the Linac and "boosted" their energy to 8 billion electron volts. They are then injected into the Main Accelerator. The Booster synchrotron is about 500 feet in diameter. Twelve "bunches" of Booster protons are required to fill

the Main Accelerator.

In December, 1970, the last Booster magnet was installed in the completed tunnel begun in 1969. Staff members continue to improve performance of the Booster.

Design Performance

- 5×10^{12} p/batch at 5 Hz
- 5×10^{20} POT/year

BooNE is for Neutrino:

Predicted Neutrino Flux:

- Sanford-Wang parameterization: Global fit to $p-\operatorname{Be}\pi^+$ data
- Kaons from MARS
- Dominant Processes at $\sim 1 \, {\rm GeV}$:
 - CC Quasi-elastic
 - NC Elastic
 - Resonance

Comparable energies to Off-Axis proposals

BooNE is for Experiment:

Veto Region MiniBooNE:

- 540 m from target
- 6.1 m radius sphere Mineral oil target
- Optical barrier at 575 cm
 - Inner "Tank" region
 - Outer Veto region
- 1280 8" PMTs in Tank (10%)
- 240 8" PMTs in Veto

Detect neutrino interactions via Č and Scintillation light

Calibration Devices:

Muon Tracker + Cubes:

- Muon Hodoscope above detector Four layers of scintillator bars Independent track reconstruction
- Scintillator Cube
 Seven cubes throughout detector
 Independent vertex reconstruction

Stopping muons with precisely known pathlength

Laser Flask:

- Prompt monochromatic light Pulsed via 397 and 438 nm laser
- Varying intensity sub-1 p.e. → multi p.e.
- Varying location
 Four flasks + bare fiber in detector.
 Study PMT hit reconstruction
 Study oil optical properties.

The Collaboration

University of Alabama Bucknell University University of Cincinnati University of Colorado Columbia University

Embry Riddle Aeronautical University Fermi National Accelerator Laboratory

Indiana University Los Alamos National Laboratory

Louisiana State University University of Michigan Princeton University

Y.Liu, I.Stancu S.Koutsoliotas E.Hawker, R.A.Johnson, J.L.Raaf T.Hart, R.H. Nelson, E.D.Zimmerman A. Aguilar-Arevalo, L.Bugel, J.M.Conrad, J.Formaggio, J.Link, J.Monroe, D. Schmitz, M.H.Shaevitz, M.Sorel, G.P. "Sam" Zeller D.Smith L.Bartoszek, C.Bhat, S.J.Brice, B.C.Brown, D.A.Finley, B.T.Fleming, R.Ford, F.G.Garcia, P.Kasper, T.Kobilarcik, I.Kourbanis, A.Malensek, W.Marsh, P.Martin, F.Mills, C.Moore, P.Nienaber, E.Prebys, A.D.Russell, P.Spentzouris, R.Stefanski, T.Williams D.C. Cox, J.A. Green, H.Meyer, R.Tayloe G.T.Garvey, C. Green, W.C.Louis, G.McGregor, S. McKenney, G.B.Mills, V.Sandberg, B.Sapp, R.Schirato, R.Van de Water, N. Walbridge, D.H.White R.Imlay, W.Metcalf, M.Sung, M.Wascko J.Cao, Y.Liu, B.P.Roe A.O.Bazarko, P.D.Meyers, R.B.Patterson, F.C.Shoemaker, H.A.Tanaka

Neutrino Data:

- Inclusive distributions
- Charged Current quasi-elastic scattering
- Neutral Current elastic scattering
- Neutral Current π^0 production
 - $\sim 1 \times 10^{20}$ protons-on-target analyzed

Comparisons to Monte Carlo are relatively normalized.

See Andrew Bazarko's talk for discussion on Oscillation Analysis

Neutrino Events!

Event time is calculated from "subevent": First cluster of > 10 hits contiguous in time. • Decay electrons

Backgrounds can be eliminated with multiplicity cuts (Tank/Veto PMT Hits).

Neutrino Events!

Veto cut eliminates cosmic μ :

- Single MIP ~ 18 hits Most are throughgoing.
- Eliminate with $N_{VETO} < 6$

Remaining Background:

- Decay electrons (< 200 Hits) Muon enters before window.
- Env./Noise (< 20 Hits)

Remaining background eliminated with Tank Multiplicity cut.

Neutrino Events!

Remaining background eliminated with $N_{TANK} > 200$. S/B > 1000

 $\sim 150 K$ "clean" candidates in $\sim 1.5 \times 10^{20}$ protons-on-target Approximately 50%/50% CC Quasi-elastic/Single Pion

 ν_{μ} Quasi-Elastic Events:

Size of Ball = Charge Red = early, Blue = late

- Abundant (40%)
- Simple topology: one muon-like ring proton rarely above Č threshold
- Obtain E_{μ} , θ_{μ} from fit

Selecting Quasi-Elastic Events:

Selection

- Single μ -like ring, decay electron
 - Ring profile/sharpness
 - Time of hits
 - Minimize energy bias
 - \rightarrow Fisher discriminant
- MC indicates $\sim 88\%$ purity Some background is irreducible
- Relatively well-known cross section
- \rightarrow cross-check of flux prediction $\sim 28 K~{\rm CC}~{\rm QE}$ candidates

Neutrino Energy:

Kinematic Reconstruction:

Assume:

$$\nu_{\mu} + n \to \mu^- + p$$

$$ightarrow$$
 obtain $E_{
u}$ via E_{μ} , $heta_{\mu}$

Account for:

- Binding energy
- Muon mass
- Č threshold

 $\sim 10\%$ resolution for $E_{\nu} > 500 \,\mathrm{MeV}$

 Q^2 and $E_{
u}$:

Neutral Current Elastic Scattering:

 $\nu_{\mu} + (p/n) \rightarrow \nu_{\mu} + (p/n)$

- Typically sub-Č: Dominated by scintillation
- low N_{TANK} , large late light fraction
- Large cross section ($\sim 15\%)$
- Sensitive to strange spin component

Background subtraction:

- Beam excess clearly visible Non-beam background
 - Decay electrons
 - Environmental
- Subtract with random triggers

Neutral Current Hit Spectrum:

Low multiplicity events:

- Strobe background subtraction
- Unknown component $N_{TANK} < 30$
- 50 hit threshold for vertex fit Normalize MC to $N_{TANK} > 50$ yield

Late light Selection:

• Fit event vertex for $N_{TANK} > 50$ events

Beam Data
Monte Carlo

160

Tank Hits

180

• Calculate fraction of late hits

Events 8000

6000

4000

2000

20

40

• Select events with significant late light

Agreement for $N_{TANK} > 50$ with/without late light cut.

Neutral Current π^0 Production:

Physics Interest:

- Background for ν_e
- Limits on Sterile ν

Primary Mechanisms:

- Resonance: $\nu + (p/n) \rightarrow \nu + \Delta$ $\Delta \rightarrow (p/n) + \pi$
- Coherent: $\nu + C \rightarrow \nu + C + \pi^0$

Size of Ball = Charge Red = early, Blue = late

Reconstructing Two Ring Events:

Blue: Cherenkov Light Red: Scintillation

- Fourteen parameter fit:
 - Vertex of decay (4)
 - Direction of photons (4)
 - Mean emission points (2)
 - Č/Sci Intensity(4)
- Kinematics from Č Intensity

•
$$mc^2 = \sqrt{2E_1E_2(1-\cos\theta_{12})}$$

•
$$\vec{p} = E_1 \hat{u}_1 + E_2 \hat{u}_2$$

 E_1, E_2 derived from Č rings.

• No (e/μ) Ring Identification

Inclusive Mass Distribution:

Bin data in kinematic quantities:

- Momentum (p_{π^0})
- Angle relative to beam $(\cos heta_{\pi^0})$
- CM Decay angle $(\cos \theta_{CM})$

Event Selection:

- No decay electrons
- $N_{TANK} > 200$, $N_{VETO} < 6$
- E_1 , $E_2 > 40 \,\mathrm{MeV}$

Signal shape from Res.+Coh. π^0 s

Background shape from Monte Carlo (Contains π^0 s from FSI, etc.)

EML Fit to extract signal yield

Extract binned yields \rightarrow Get distribution

π^0 Angular Distributions:

 π^0 CM Decay Angle

- Should be flat (pseudoscalar)
- Distorted by E_{γ} cut, inefficiency
- Probes inefficiencies from: asymmetry, ring merging

Sensitive to production mechanism

- Coherent is highly forward peaked
- Resonance is less forward-peaked

MC assumes Rein-Sehgal cross-sections

π^0 Momentum Distribution :

Higher Momentum means:

- Energy asymmetry
- Smaller opening angle

Harder to Reconstruct

Physics Outlook:

- CC Quasi-Elastic: Compare with flux predictions $\rightarrow \nu_{\mu}$ disappearance analysis. Probe low Q^2 region
- Neutral Current Elastic: Measure σ_{NC}/σ_{CC} vs. Q^2 Probe Δs .
- NC π⁰ Production: Cross-section measurement Background extrapolation Analyze coherent contribution

Conclusions:

 \bullet MiniBooNE has been taking beam for ~ 1 year.

- 1.5×10^{20} protons-on-target
- 150K contained neutrino candidates
- Detector is working as expected.
- Reconstruction algorithms working well
- First sample of neutrino physics

More to come!