D_{sJ} Spectroscopy

observed by BABAR, CLEO and Belle in 2003. Two new charm-strange particles have been

- DsJ Spectroscopy
- BaBar's Discovery of D_{sJ} (2317) -> $D_{s}\pi^{0}$
- CLEO's Discovery of D_{sJ} (2463) (left to Dr. Ecklund-CLEO talk)
- Belle's results on D_{sJ} (2317) , D_{sJ} (2457)
- BaBar Results on D_{sJ} (2458)

T D D
New

The spectrum of D_s (cs) states had gaps.

⊢ ⊢ + →	4 0 + +	J^P
2.55 2.56	2.48	$\frac{\rm GIK}{\rm GeV/c^2}^{a}$
2.535 2.605	2.487	${ m DP-E}^{\ b} { m Model} \ { m GeV/c^2}$

^aS. Godfrey and R. Kokoski, Phys. Rev. D43, 1679 (1991).
 S. Godfrey and N. Isgur, Phys. Rev. D32, 189 (1985).
 ^bM. Di Pierro and E. Eichten, Phys. Rev. D64, 114004 (2001).
 (C) BardeenEichtenHill Model (HQET+chiral sym)

The states predicted could decay to

DK so would be broad (Γ~ 270-990 MeV/c²).

The states recently found lie below

DK or **D***K threshold and so are narrow.

Lucien Cremaldi, U. Mississippi

and Quarter to Protect

Each of the states:

- Are ~ 42 MeV/c² below **DK** (strong decay) threshold.
- Are narrow (width comparable to resolution).
- Decay in a $\Delta I = 1$ transition.

This seems to have everyone excited:

- Either something is wrong with the quark models.
- Perhaps there is a new quark phase for heavy hadrons.
- Csqq_Molecules!

WIN03, Oct 8, 2003

Data Selection

- Select good K K π track candidates + particle id.
- All pairs of γ 's, each γ having energy > 100 MeV, are fitted to a π^0 with mass constraint.
- Each π^0 is fitted twice:
- To the production vertex to investigate the $D_s^+\pi^0$ mass
- To the K⁺K⁻ π^+ vertex so that we can also use the D_s -> K⁺K⁻ $\pi^+\pi^0$ mode.

- Continuum-each event was required to have p_D* > 2.5 GeV/c.

WIN03, Oct 8, 2003

The D_s⁺ -> K⁺ K⁻ π ⁺ Dalitz Plot

Events in the D_s⁺ mass band:

- **K**^{*} and *ϕ* bands do not cross (no double counting).
- cos² distributions evident in vector bands.
- Cuts select the ϕ and K* peaks in the plot.

Total K⁺K⁻π⁺ Mass Spectrum

- Sum of φπ⁺ and K^{*}⁰K⁺ contributions is » 80,000 D_s⁺ above background.
- We define
- signal region:

1.954 < m(K⁺K⁻π⁺) < **1.980** GeV/c²

- and two sideband regions:
- **1.912** < m(K+K-π+) < **1.934** GeV/c² **1.998** < m(K+K-π+) < 2.020 GeV/c²

Unexpected large signal found in $D_s^+\pi^0$ mass

Discovery of D_{sJ}*(2317)+

Fit to the Signal

Require p* > 3.5 GeV/c.

Fit to polynomial and a single Gaussian. 1267+-53 candidates (91fb⁻¹) **m = 2316.8 +- 0.4 GeV/c²**

 $\sigma = 8.6 + 0.4 \text{ MeV/c}^2$

(errors statistical only).

Resolution from MC: 8.9 +- 0.2 MeV/c²

s⁺π^u Mass Spectrum

A striking signal observed in the $D_s^+\pi^0$ system.

Signal clearly associated with both D_s^+ and π^0

D_sπ⁰ CMS Momentum (**p**^{*}) Dependence

D₅+(2317) Decay Angular Distribution

- Helicity angle distribution provides spin information.
- The $D_s^+\pi^0$ mass spectrum is fitted in 10 slices of $\cos(\theta)$.
- The corrected distribution in $\cos(\theta)$ is consistent with being flat allowing
- for 0^+ barring polarizing effects.

$D_{s}^{+}\gamma, D_{s}^{+}\gamma\gamma, D_{s}^{*}(2112)\gamma, D_{s}^{+}\pi^{0}\pi^{0}$

No evidence $D_{sJ}(2317)$ in any of these decays.

Missing Gammas from Higher Mass States - D_s+ π^o γ , D_s*(2112) π^o

No downfeed BUT ...

"Although we rule out the decay of a state of mass 2.46 GeV/c2 as the sole source of the $D_{s}^{+\pi^{0}}$ mass peak corresponding to the $D_{sl}(2317)^{+}$, such a state may be produced in addition to the $D_{sl}(2317)^{+}$. However, the complexity of the overlapping kinematics of the $D_{s}(2112)^{+1}$ $D_{s}^{+\gamma}$ and $D_{sl}(2317)^{+1}$ $D_{s}^{+\pi^{0}}$ decays requires more detailed study, currently underway, in order to arrive at a definitive conclusion."

... from our PRL 90 (2003) 242001.

BaBaR Discovers New Narrow Resonance

$N = 231 ^{+31}_{-29}$

350.0 +- 1.2 (stat) +- 1.0 (syst) $m(D_s\pi^0) - m(D_s)$

150

CLEO Confirms the D_s(2317)

0.20

 $M(D_s\pi^0)$ - $M(D_s)$ (GeV/c²) 0.50

0.60

T. Browder, CIPANP 2003

 $D_{s} \rightarrow \phi \pi$, **p*** > 3.5 GeV/c 78 fb⁻¹ sample So Does Belle (in continuum)

 $\sigma = 8.1 + 0.5 \text{ MeV/c}^2$ N = 770 + 43 events $M = 2317 + 0.5 \text{ MeV/c}^2$

CLEO's Discovery of D_s(2463) Signal

 $D_{sJ}(2463)->D_{s}^{*}(2112) \pi^{o}$ Surprise for Babar!

They used MC to estimate:

• "feed up" contribution from $D_s(2317)$ with random γ to be 9% of signal.

"feed down" contribution of

D_s(2463) to the D_s(2317) to be 84%.

A signal of 41+- 12 events (>5 σ)

WIN03, Oct 8, 2003

Side-band subtracted M(Ds*πo) - M(Ds+* πo)

M(Ds* x⁰) - M(Ds*)

GeV/c²

Events/5MeV

Belle's Observation of the DsJ (2457) in the c c continuum

		\wedge		
I M ANO (C) LAU	BH			
	T		V	
		$\mathbf{\vee}$		

B-> DD_{sJ}(2317) B-> DD_{sJ}(2457)

4 Modes of 6 Modes of

Decay channel	ΔE yield	$M(D_{sJ})$ yield	Efficiency, 10^{-4}	$B, 10^{-4}$	Significance
$B^+ \to \bar{D}^0 D^+_{sJ}(2317) \ [D^+_s \pi^0],$	$13.7^{+5.1}_{-4.5}$	$13.4^{+6.2}_{-5.4}$	1.36	$8.1^{+3.0}_{-2.7}\pm 2.4$	5.0σ
$B^0 \to D^- D^+_{_{SJ}}(2317) \ [D^+_s \pi^0]$	$10.3^{+3.9}_{-3.1}$	$10.8^{+4.2}_{-3.6}$	0.97	$8.6^{+3.3}_{-2.6}\pm 2.6$	6.1σ
$B^+ \to \bar{D}^0 D^+_{sJ}(2317) \ [D^{*+}_s \gamma]$	$3.4^{+2.8}_{-2.2}$	$2.1^{+4.1}_{-3.4}$	1.08	$2.5^{+2.1}_{-1.6} (< 7.6)$	
$B^0 \to D^- D^+_{sJ}(2317) \ [D^{*+}_s \gamma]$	$2.3^{+2.5}_{-1.9}$	$1.6^{+2.4}_{-1.9}$	0.69	$2.7^{+2.9}_{-2.2}(< 9.5)$	
$B^+ \to \bar{D}^0 D^+_{sJ}(2457) \ [D^{*+}_s \pi^0]$	$7.2^{+3.7}_{-3.0}$	$8.9^{+4.0}_{-3.3}$	0.49	$11.9^{+6.1}_{-4.9} \pm 3.6$	2.9σ
$B^0 \to D^- D^+_{sJ}(2457) \ [D^{*+}_s \pi^0]$	$11.8^{+3.8}_{-3.2}$	$14.9^{+4.4}_{-3.9}$	0.42	$22.7^{+7.3}_{-6.2}\pm 6.8$	6.5σ
$B^+ \rightarrow \bar{D}^0 D^+_{sJ}(2457) \ [D^+_s \gamma]$	$19.1^{+5.6}_{-5.0}$	$20.2^{+7.2}_{-6.9}$	2.75	$5.6^{+1.6}_{-1.5}\pm1.7$	5.0σ
$B^0 \rightarrow D^- D^+_{sJ}(2457) \ [D^+_s \gamma]$	$18.5^{+5.0}_{-4.3}$	$19.6^{+5.6}_{-4.9}$	1.83	$8.2^{+2.2}_{-1.9}\pm2.5$	6.5σ
$B^+ \rightarrow \bar{D}^0 D^+_{sJ}(2457) \ [D^{*+}_s \gamma]$	$4.4^{+3.8}_{-3.3}$	$8.2^{+4.0}_{-3.4}$	1.15	$3.1^{+2.7}_{-2.3} (< 9.8)$	
$B^{0} \to D^{-} D^{+}_{sJ}(2457) \ [D^{*+}_{s} \gamma]$	$1.1^{+1.8}_{-1.2}$	$0.2^{+1.8}_{-1.2}$	0.71	$1.3^{+2.0}_{-1.4} (< 6.0)$	
$B^+ \to \bar{D}^0 D^+_{sJ}(2457) \ [D^+_s \pi^+ \pi^-]$	< 4.0	$-2.2^{+2.0}_{-1.6}$	1.89	< 2.2	
$B^0 \to D^- D^+_{sJ}(2457) \ [D^+_s \pi^+ \pi^-]$	< 2.5	$-1.2^{+2.7}_{-2.0}$	1.35	< 2.0	
$B^+ \to \bar{D}^0 D^+_{sJ}(2457) \ [D^+_s \pi^0]$	< 2.4	$1.0^{+2.7}_{-2.0}$	0.94	< 2.7	
$B^0 \to D^- D^+_{sJ}(2457) \ [D^+_s \pi^0]$	< 2.4	$0.3^{+1.8}_{-1.2}$	0.68	< 3.6	*****

TABLE I: Product branching fractions for $B \rightarrow \bar{D}D_{sJ}$ decays.

Production Branching Fractions for B->DD_{sJ}(2317) and B->DD_{sJ}(2457)

Decays to di-Pions

an almost vertical band $D_s(2317) \rightarrow D_s\pi^0$ is seen as

signal from $D_s(2460) > D_s \pi^0 \gamma$. such overlap from a possible It is important to separate

D*(2112)->**D**_sγ bands. partly due to kinematic overlap between **D**_s(2317)->**D**_sπ⁰ and ξ^{0.25}

Enhancement at 2460 MeV/c²

 $D_{s}(2317) \rightarrow Ds \pi^{o} + \gamma_{bak}$

Kinematic Reflections

Extract the D_sJ⁺(2458) Signal

Comparison with CLEO and Belle $D_{sJ}^{*}(2317)^{+} D_{sJ}^{*}(2458)^{+}$ Mass

- $D_{sJ}^{*}(2317)^{+}$ mass: Seen $D_{s}^{+}\pi^{0}$ Only : Consistent with J^P= 0⁺ MeV/c² (prelim.)
- Belle BABAR $2317.3 \pm 0.4 \pm 0.8$ 2317.2 ± 0.5 ± 0.9

MeV/c²

(cc, prelim.)

MeV/c²

(B decay)

- Belle
- CLEO 2319.8 ± 2.1 ± 2.0 2318.5 ± 1.2 ± 1.1

MeV/c²

- $D_{sJ}(2458)^+$ mass: Seen $D_s^+ \pi^0 \& D_s^+ \gamma$: Consistent with J^P= 1+ Belle BABAR $2458.0 \pm 1.0 \pm 1.0$ $2456.5 \pm 1.3 \pm 1.1$ MeV/c² (prelim.)
- CLEO Belle $2459.2 \pm 1.6 \pm 2.0$
- $2463.1 \pm 1.7 \pm 1.2$
- MeV/c² MeV/c² MeV/c² (*cc*, prelim.) (B decay)

SUMMARY

- continuum. DsJ(2317)and Dsj(2458) well established in B events and
- $J^{P} = O^{+} 1^{+}$ assignments are compelling.

samples of BaBar and BeLLe. Some mass refinements will come with the higher statistics

- •BR measurements being published.
- Searches for new and rarer decays continue.

