Experimental Review on Weak Decays, CP Violation and CKM

Toru lijima Nagoya University

October 6, 2003 Weak Interactions and Neutrinos Workshop-2003 Lake Geneva, Wisconsin, USA

Quark Flavor Physics

Players: K, D, B mesons and many baryon partners

Physics targets:
CP violation
CKM
precise test of SM
Rare processes FCNC
LFV
etc.

Detailed & Precise Survey of SM particles

Evidence of New Physics !

Experimental Activities SO MANY and WIDE !

High energy machines **D**0 CDF ALEPH LEP, Tevatron, LHC OPAL FOCUS **KTeV** SELLEX **NA48** • Proton drivers E787 E949 **KOPIO** AGS, KEK-PS, JPARC E391a CKM CLEO-c e+e- machines KLOE CESR, KEKB, PEPII, Super-B CLEO LHCb Belle BaBar **BTeV** Frascati

My Apology in advance: I CANNOT cover all of these !

Toru lijima, Weak Interactions and Neutrinos Workshop -2003

L3

DELPHI

Brief History

Predictions and Discoveries after my birth (1964)! 1964 CPV in KL $\rightarrow \pi^+\pi^-$ = My age 1973 Kobayashi – Maskawa 6 quarks 1974 Charm **Direct CPV** 1977 Bottom 1981 Carter – Sanda Time Large CPV in B system 1994 Top 1999 Direct CPV in K system Next slide 2001 Large CPV in B system

All major predictions of KM now confirmed. What comes next ?

Direct CPV in K

NA48 (CERN) and KTEV (FNAL)

Double ratio

$$\frac{\Gamma(K_L \to \pi^+ \pi^-) / \Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_L \to \pi^0 \pi^0) / \Gamma(K_S \to \pi^0 \pi^0)} = 1 + 6 \operatorname{Re} \frac{\epsilon}{\epsilon}$$

Simultaneous logging of all the 4 modes The most updated result

$$\operatorname{Re} \frac{\epsilon'}{\epsilon} = \begin{cases} (14.7 \pm 2.2) \times 10^{-4} \\ (NA48: \text{ full data,} \\ PL,2002) \\ (20.7 \pm 2.8) \times 10^{-4} \\ (E832: \text{ partial data,} \\ PRD,2003) \end{cases}$$

No meaningful CKM contraint because of hadronic uncertainty

Note

 $(\phi_1, \phi_2, \phi_3) \equiv (\beta, \alpha, \gamma)$

 $A_f = -C_f$

CP Violation in SM

Weak eigenstate

Mass eigenstate

 $\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} V_{us} V_{ub} \\ V_{cd} V_{cs} V_{cb} \\ V_{d} V_{ts} V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

Wolfenstein

$$\begin{bmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + O(\lambda^4)$$

 $\lambda \sim 0.2, A \sim \rho \sim \eta \sim O(1)$

ud(s,b)

SM: CPV is a consequence of the single complex phase.

The Unitarity Triangle & B Decays

$$V_{ud}V_{ub}^{\star} + V_{cd}V_{cb}^{\star} + V_{td}V_{tb}^{\star} = 0$$

Accelerator Challenge

History of luminosity improvement

KEKB Accelerator

e (HER: 8.0GeV) + e⁺ (LER: $\Rightarrow \Upsilon(4S) \rightarrow BB$ =Lorentz boost: $\beta \gamma = 0.425$ Finite crossing angle: 11mrad

现满山

1 km

台光·羅領

ns and Neutrinos Workshop <u>-</u>2003 ea

PEPII Accelerator

e⁻ (9.0GeV) + e⁺ (3.0GeV)
 ⇒ Υ(4S) → BB
 ⇒Lorentz boost: βγ =0.56
 Head-on collision

Luminosity Now !

Peak luminosity

 KEKB: 10.567 cm⁻²s⁻¹
 PEPII: 6.582 cm⁻²s⁻¹

 Integrated luminosity (on ^Y(4S))

 KEKB/Belle: 158 (140) fb⁻¹
 PEPII/BaBar: 131 (113) fb⁻¹

Belle daily / Integrated luminosity

BaBar Integrated luminosity

BaBar Detector

Superconducting Coil (1.5T)

Silicon Vertex Tracker (SVT)[5 layers]

> Drift Chamber [40 stereo lyrs](DCH)

CsI(TI) Calorimeter (EMC) [6580 crystals]. Instrumented Flux Return (IFR) [Iron interleaved with RPCs].

Cherenkov Detector (DIRC) [144 quartz bars, 11000 PMTs]

e⁻ (9 GeV)

– Mixing: $e^{-2i\phi 1}$

Cont'd

If only one single decay amplitude

$$\implies A = A, \ |\lambda| = 1 \ \text{ ex} \ B \longrightarrow J/\psi K^0$$

$$A_{CP}(t) \equiv \frac{\Gamma(\overline{B}_d^0 \to f_{CP}) - \Gamma(B_d^0 \to f_{CP})}{\Gamma(\overline{B}_d^0 \to f_{CP}) + \Gamma(B_d^0 \to f_{CP})} = -\xi_f \sin 2\phi_I \sin \Delta mt$$

$$(a) t=0$$
CP eigen value

If more than one amplitide and additional weak phases → Asymmetry in decay amplitude λ ≠ 1

$$A_{CP}(t) = \frac{2 \text{Im}\lambda}{1 + |\lambda|^2} \sin(\Delta m_d t) - \frac{1 - |\lambda|^2}{1 + |\lambda|^2} \cos(\Delta m_d t)$$
$$= \frac{S_f \sin(\Delta m_d t) + A_f \cos(\Delta m_d t)}{1 + |\lambda|^2}$$

$A_f \neq 0 \longrightarrow \text{Direct CP violation} A_f (Belle) = -C_f (BaBar)$

Toru lijima, Weak Interactions and Neutrinos Workshop -2003

tcp

A

B

В

 $\lambda = e^{-2i\phi_1} \overline{\overline{A}}$

CP Measurement

Asymmetric e^+e^- collision $\Rightarrow Y(4S) \Rightarrow$ boosted B-B pair One B decays into fcp. Flavor of the other B is tagged by lepton/K... CP-side (B_{CP}) ▶ t=0: time of the Btag decay. If Btag=B⁰ \Rightarrow $\overline{B}^0(t=0) \rightarrow f_{CP}$. $\rightarrow f_{CP}$ If Btag= $\overline{B^0} \Rightarrow B^0(t=0) \rightarrow f_{CP}$. Precise measurement of $\Delta z = z(cp) - z(tag)$ B^0 \Rightarrow decay time difference (Δt) J/w $\blacksquare Measure Acp(t) by fitting$ K e⁺(3.5GeV) e⁻(8.0GeV) K-Tag-side (Btag) $\Delta z = c\beta\gamma\tau$ $\sim 200 \mu$

CP Analysis

Expected time distribution

Perfect tagging & ∆t resolution

Realistic mis-tagging & Finite ∆t resolution

 $\sigma_{Z}(tag) \simeq 140 \,\mu m$

/3*µm*

 $\sigma_{7}(c$

Flavor Tagging

Use inclusive flavor-specific properties

Inclusive Leptons:

- high-p Iintermed-p I+
 Inclusive Hadrons:
 - high-p π⁺
 Intermed.πK⁺
 low-p π⁻

 $B^{0} \rightarrow D^{(*)+} \pi^{+}, D^{(*)-} \rho^{+}, etc.$ $\downarrow K^{+} X, \qquad \downarrow \pi^{+} \pi^{0}$ $D^{0} \pi^{-}$

Belle: Multi-dimensional likelihood $\implies \varepsilon_{eff} = 28.7 \pm 0.5\%$ BaBar: Neural Net $\implies \varepsilon_{eff} = 28.1 \pm 0.7\%$

■ Wrong tag fraction is calibrated by time-dependent mixining analysis of self-tagging B decays: $B^0 \rightarrow D^{*-} \ell^+ \nu$

Measurement of $sin2\phi_1$ (Belle2003)

■ 140fb⁻¹, Updated at LP03

Include both CP-odd and CP-even

 $Sin2\phi_1$ (Belle2003) = $0.733\pm0.057\pm0.028$

BELLE-CONF-0353

 $|\lambda_{ccs}| = 1.007 \pm 0.041$ (stat) *i.e.*, consistent with no direct CPV.

Measurement of $sin2\phi_1$ (BaBar2002)

81fb⁻¹

 $sin2\phi_1$ (BaBar2002) = 0.741±0.067±0.034

hep-ex/0207042, PRL 89, 201802 (2002)

sin2¢₁ Measurement History 2001 First observation of CPV outside K.

Torulinna, Weak Intel Sciona a Dreen Cision Burenent!

sin2_{\$\phi_1} Measurement Status

CKM fitter group (A.Hoecker)

sin2∳₁ (Belle 2003,140 fb⁻¹) =0.733±0.057±0.028

sin2β (BaBar 2002, 81 fb⁻¹) =0.741±0.067±0.033

sin2\phi_1 (New 2003 World Av.) =0.736±0.049

In the Standard Model u, c, t q \bar{s} ϕ $-S_{sss} = sin2\phi_1 (b \rightarrow ccs)$

 $ar{u},\,ar{d}$

 $sin2\phi_1$ in Penguin Dominated Decays

If a New Particle exists in the Penguin loop and introduce additional phase,

 $-A_{sss} \sim 0$

 $A_{CP}(t) = -\xi_{CP} \sin 2(\phi_1 + \phi_{NP}) \times \sin(\Delta m_d t)$ $\sin 2\phi_1^{\text{eff}} \neq \sin 2\phi_1(B \to J/\psi K_s)$

• $\sin 2\phi_1(B \rightarrow J/\psi Ks)$ is already precise enough for comparison.

 $ar{u},\,ar{d}$

CPV in $B \rightarrow \eta' Ks$

u, c,

 η, η

 K^{+}, K^{*}

B→sss, suu, sdd
Tree expected be small.
Unexpectedly large rate.

 $Br(B^{0} \rightarrow \eta' Ks) = 5.8 \times 10^{-5}$

Current WA: $\sin 2\varphi_1^{\text{eff}}$ (B \rightarrow η 'Ks)=0.27±0.21

 K^{+}, K^{*+}

 η, η

CPV in $B \rightarrow K^+K^-K_s$ Decays

$$S_{KKKs} = 0.51 \pm 0.26 \pm 0.05 +0.18 \\ -0.00 \\ (A = -0.17 \pm 0.16 \pm 0.04)$$

Belle 2003:[140 fb⁻¹]

CPV in $B \rightarrow \phi K_S$

Pure b->sss Penguin process.
 Theoretically the cleanest channel.

Status before LP03

Both BaBar and Belle updated the results at LP03 with 110fb-1 and 140fb-1 data, respectively.

CPV in $B \rightarrow \phi K_s$ (BaBar 2003)

BaBar 2003: $\sin 2\phi_1^{\text{eff}} (\phi K_s) = +0.45 \pm 0.43 \pm 0.07$

$(A=0.38\pm0.37\pm0.12)$

CPV in $B \rightarrow \phi K_s$ (Belle 2003)

BaBar 2003: 140 fb⁻¹

Good tags

Toru lijima, Weak Interactions and Neutrinos Workshop -2003

CPV in $B \rightarrow \phi K_s$ Results (Belle 2003)

Belle 2003: $\sin 2\phi_1^{\text{eff}}(\phi K_S) = -0.96 \pm 0.50^{+0.09}_{-0.11}$

 $(A = -0.15 \pm 0.29 \pm 0.07)$

3.5 σ deviation from $\sin 2\phi_1 (J/\psi K_s) = 0.731 \pm 0.056 !!$

CPV in $B \rightarrow K_{s}\pi^{0}$ (BaBar 2003)

■ Reconstruct B→K_Sπ⁰ decay vertex by using Ks trajectory and boost trajectory.

boosted Y(4s)

 R^0

 \overline{B}^0

Challenging Measurement !

 $N = 123 \pm 16$ $C = 0.40_{-0.28}^{+0.27} \pm 0.10$ $S = 0.48_{-0.47}^{+0.38} \pm 0.11$ $S(C = 0) = 0.41_{-0.48}^{+0.41} \pm 0.11$

ÁΖ

 π^0

Summary of $sin2\phi_1$ (Summer 2003)

 J/ψ Ks precision already < 5%
 Belle φKs gives a 3.5σ away from WA of sin2φ1(J/ψ Ks) φKs WA gives a 2.7σ deviation -0.14±0.33

■ b→s Penguin WA still gives a 3.1_o deviation

> CPV in b→ccd modes: K.F.Cheng

It is of great importance to confirm the *\phi*K_S anomaly

Precision in Future

CPV in $B \rightarrow \pi^+ \pi^-$

Time-dependent CP asymmetry $A_{CP}(t) = A_{\pi\pi} \cos \Delta m t + S_{\pi\pi} \sin \Delta m t$

If b→u tree(T) was dominant,

$$\lambda = e^{2i\phi_2}$$
$$A_{\pi\pi} = 0$$
$$S_{\pi\pi} = \sin 2\phi_2$$

Both tree(T) and Penguin(P) diagrams contributes with different weak phases.

$$\lambda = e^{2i\phi_2} \frac{1 + |P/T| e^{i\delta} e^{i\phi_3}}{1 + |P/T| e^{i\delta} e^{-i\phi_3}}$$
$$A_{\pi\pi} \propto \sin \delta$$
$$S_{\pi\pi} = \sqrt{1 - A_{\pi\pi}^2} \sin 2\phi_2^{\text{eff}}$$

"Penguin Pollution"

CPV in $B \rightarrow \pi^+\pi^-$ (Belle) Belle [78fb⁻¹] $N_{\pi\pi} = 163 \pm 18$

Belle updated result is coming...

CPV in $B \rightarrow \pi^+ \pi^-$ (BaBar)

BaBar's result updated with 113fb⁻¹ (LP03).

Extraction of ϕ_2 (model-dep.)

Estimation of |P/T| with Data: $B \rightarrow K^0 \pi^+, B \rightarrow \pi \ell \nu, B \rightarrow \pi^0 \pi^+$ Assumption: SU(3), factorization

Constraint (even with model/assumption) is weak yet. Data consistent with SM (CKM fit) in all scenario.

Extraction of ϕ_2 (model-indep.)

Isospin analysis (ultimate goal). Theoretically the cleanest, but require B⁰-> $\pi^0\pi^0$ and B $\rightarrow\pi^0\pi^0$ data.

$$heta=|\phi_2-\phi_2^{e\!f\!f}|$$

$$\frac{\frac{1}{\sqrt{2}}\widetilde{A}(\overline{B^{0}} \to \pi^{+}\pi^{-})}{\frac{1}{\sqrt{2}}A(B^{0} \to \pi^{+}\pi^{-})} \widetilde{A}(\overline{B^{0}} \to \pi^{0}\pi^{0})$$

$$\frac{2\theta}{A(B^{0} \to \pi^{0}\pi^{0})} \widetilde{A} = e^{2i\phi_{3}}A$$

$$\widetilde{A}(B^{-} \to \pi^{-}\pi^{0}) = A(B^{+} \to \pi^{+}\pi^{0})$$

Grossman-Quinn ('98) bound and its extensions. Charles ('99) Gronau/London/Sinha/Sinha $\cos 2\theta \ge \frac{\left(\frac{1}{2}B^{+-} + B^{+0} - B^{00}\right)^2 - B^{+-}B^{+0}}{B^{+-}B^{+0}\sqrt{1 - A_{\pi\pi}^2}}$

These bound gives good constraint if $B \rightarrow \pi^0 \pi^0$ is very small.

 $B \rightarrow \pi^0 \pi^0$

BaBar [113fb⁻¹] $N(\pi^{0}\pi^{0}) = 46^{+14+2}_{-13-3}, 4.2\sigma$ $B(B^{0} \to \pi^{0}\pi^{0}) = (2.1 \pm 0.6 \pm 0.3) \times 10^{-6}$ Belle [140fb⁻¹] $N(\pi^{0}\pi^{0}) = 25.6^{+9.3}_{-8.4}, 3.4\sigma$ $B(B^{0} \to \pi^{0}\pi^{0}) = (1.7 \pm 0.6 \pm 0.3) \times 10^{-6}$

Current WA: $B(B^0 \to \pi^0 \pi^0) = (1.90 \pm 0.47) \times 10^{-6}$

CPV in B→π⁺π⁻ is being measured.

 $S_{\pi\pi} = -0.58 \pm 0.20$ $A_{\pi\pi} = +0.38 \pm 0.16(-C_{\pi\pi})$

Stay tuned for the next Belle result.

Pieces of the isospin analysis being measured. $Br(B^{0} \to \pi^{+}\pi^{-}) = (4.55 \pm 0.44) \times 10^{-6}$ $Br(B^{0} \to \pi^{0}\pi^{0}) = (1.90 \pm 0.47) \times 10^{-6}$ $Br(B^{0} \to \pi^{+}\pi^{0}) = (5.27 \pm 0.79) \times 10^{-6}$

■ $B \rightarrow \pi^0 \pi^0$ is too large to give useful G-Q type bound.

 $\theta = \left| \phi_2 - \phi_2^{eff} \right| < 35^\circ$

Need measure $Acp(\pi^0\pi^0)$.

Require a lot of luminosity !

Another channel: $B \rightarrow \rho \pi$

A_{cp} in Charmless B Decays

Direct CPV through Tree and Penguin interference.

 $A_{CP} = \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)}$

 $\propto \sin\phi_3 \cdot \sin(\delta_{\rm P} - \delta_{\rm T})$

Acp(Kπ) evidence?

	– Belle:	$-0.086 \pm 0.035 \pm 0.014$					
	– BaBar:	$-0.107 \pm 0.041 \pm 0.012$					
	– CLEO:	$-0.04 \pm 0.16 \pm 0.02$					
	WA: -0.0	9±0.03					
/	Thoretical effort necessary						
	to pin-dov	vn					

φ3 Measurement with DK^(*)

Gronau, Wyler ('91)

 \Rightarrow Interference in $B \rightarrow D_1 K (D_1 \rightarrow K^+ K^-, \pi^+ \pi, ...)$

 $r = |A(B^+ \to D^0 K^+) / A(B^+ \to \overline{D}^0 K^+)|$ $\sim |V_{ub}^* V_{cs}| / |V_{cb}^* V_{us}| \times [color \text{ sup pression}]$ $\sim 0.4 \times 0.25 = 0.1$

⇒Interference w/ DCS mode may be a problem.

Many extensions of this method •Gronau, London ('91), Dunietz('91) •Atwood, Dunietz, Soni ('97) •etc.

$B \rightarrow D_{cp} K (Belle)$

Belle [78fb⁻¹] $D_1: K^-K^+, \pi^-\pi^+$ $D_2: Ks\pi^0, Ks\omega(\pi^+\pi^-\pi^0), Ks\phi(K^+K^-), Ks\eta(\gamma\gamma), Ks\eta'(\eta\pi^+\pi^-)$ $R_1 = +1.21 \pm 0.25 \pm 0.14$ $R_2 = +1.41 \pm 0.27 \pm 0.15$ $A_1 = +0.06 \pm 0.19 \pm 0.04$ $A_2 = -0.18 \pm 0.17 \pm 0.05$

Measure the 4 ratios (3 indep.) and obtain 3 unknowns

$$R_{I(2)} = \frac{Br(D_{I(2)}K) / Br(D_{I(2)}\pi)}{Br(D^{0}K) / Br(D^{0}\pi)}$$
$$= 1 + r^{2} + 2r \cdot \cos \delta \cdot \cos \phi_{3}$$
$$Acp = \frac{2r \cdot \sin \delta \cdot \sin \phi_{3}}{1 + r^{2} + 2r \cdot \cos \delta \cdot \cos \phi_{3}}$$
$$\delta \to \delta + \pi \quad \text{for } D_{2}$$

Toru lijima, Weak Interactions and Neutrinos Workshop -2003

$B \rightarrow D(K_S \pi^+ \pi^-)$ Dalitz Analysis

Belle [140fb-1]

 $B^{\mp} \to D_{CP} K^{\mp}$ $D^{0} \to \overline{K}^{0} \pi^{+} \pi^{-}$ $\overline{D}^{0} \to K^{0} \pi^{+} \pi^{-} \longrightarrow D^{0} \to K_{S} \pi^{+} \pi^{-}$

Interference !

BELLE-CONF-0343, hep-ex/0308043

 $A(B^{+} \to DK^{+}) = f(m_{+}^{2}, m_{-}^{2}) + r \cdot e^{i(\phi_{3}+\delta)} f(m_{-}^{2}, m_{+}^{2})$ $A(B^{-} \to DK^{-}) = f(m_{+}^{2}, m_{-}^{2}) + r \cdot e^{i(-\phi_{3}+\delta)} f(m_{-}^{2}, m_{+}^{2})$ Complex amplitude of D⁰ \to Ks $\pi^{+}\pi^{-}$ decay $f(m_{+}^{2}, m_{-}^{2}) = \sum_{k} a_{k} \cdot e^{i\alpha} A_{k}(m_{+}^{2}, m_{-}^{2}) + b \cdot e^{i\beta}$

12 two-body resonance decays Non-resona $D^0 \rightarrow Ks\pi^+\pi^-$ decay modeled with 13 amplitudes

$B \rightarrow D(K_S \pi^+ \pi^-)$ Dalitz Analysis

• Event selection $B^{\pm} \rightarrow K^{\pm}D^{0}(\rightarrow K_{s}\pi^{+}\pi^{-}) N = 107 \pm 12$

Form Dalitz plots for B⁺ and B⁻

Fit Dalitz plot for B+,B- simultaneously with r, $\phi 3$, δ as free parameters.

 $\phi_{3} = 95^{\circ} \pm 25^{\circ} \pm 13^{\circ} \pm 10^{\circ}$ $\delta = 162^{\circ} \pm 25^{\circ} \pm 12^{\circ} \pm 24^{\circ}$ $r = 0.33 \pm 0.10$ Model dep.

 $461^{\circ} < \phi_3 < 142^{\circ} (90\% CL)$

Toru lijima, Weak Interactions and Neutrinos Workshop -2003

300 350 \$\phi_n deg Measurements of $|V_{cb}|$, $|V_{ub}|$ Semileptonic decays are the most common utilities to determine $|V_{cb}|$ and $|V_{ub}|$

|V_{cb}|: b→c |V_{ub}|: b→u

 Theoretically easy since the QCD effects are much simplified due to the two leptons in the final state
 Experimentally easy to access (in principle)

■ Both exclusive and inclusive decays can be used.
■ Exclusive decays ← Form factor

Inclusive decays ← OPE, HQE parameters

V_{cb}| Status

■ Excluisve B→D*lv

- Form factor known to ~3-4% at zero recoil.
- BaBar's new measurement at LP03.
- Inclusive B→XIv

 $|V_{cb}|_{incl} = 0.0421 \pm 0.0013$

 $V_{cb}|_{excl} = 0.0402 \pm 0.0020$

 $V_{cb}|_{evol} \cdot F(1) = 0.0367 \pm 0.0013$

- HQE parameter determination (CLEO, LEP, BaBar)

Now Aexcl <5% Aincl~3%

Toru lijima, Weak Interactions and Neutrinos Workshop -2003

Exclusive |V_{ub}| Status

B→ π I v, ρ I v
 heavy→light transition
 HQET does not work
 Large&Uncontrollable theory error.
 ΔLQCD ~20% + quenching error

 q² measurements by CLEO 2003 (Belle 2002 prelim. also) Test of theory model ?

Want unquenched LQCD F.F calculation !

Acceptance for $b \rightarrow u \mid v$ signals (larger the better)

= $(1.66 \pm 0.14 \pm 0.13 \pm 0.37 \pm 0.28) \times 10^{-4}$ Large extrapolation error due to small accpetance Mx measurement

Toru lijima, Weak Interactions and Neutrinos Workshop -2003

~80%

Belle w/ semileptonic tag + 'advanced' v recon.
 CLEO v recon.

Inclusive |V_{ub}| Status

ALEPH 4.12 ± 0.67 ± 0.76

 Each measurement has (15-20)% error. The BaBar's Mx measurement: ∆=13% (best).
 Good prospect for (Mx,q2) method.

10%

5%?

(not discussed here)

mb

Semileptonic decay moment analyses are important to determine theory parameters.

1.3 $5.70 \pm 1.00 \pm 1.40$ DELPHI $4.07 \pm 0.65 \pm 0.61$ OPAL $4.00 \pm 0.71 \pm 0.71$ LEP Average $4.09 \pm 0.37 \pm 0.56$ CLEO (endpoint) $4.08 \pm 0.22 \pm 0.61$ BABAR (endpoint) $4.43 \pm 0.26 \pm 0.67$ $CLEO(m_{*} + O)$ $4.05 \pm 0.61 \pm 0.63$ BELLE (m, with D ly tag) $00 \pm 0.64 \pm 0.53$ BELLE (m. - O') $1.96 \pm 0.47 \pm 0.52$ BABAR (m,) $2 \pm 0.38 \pm 0.49$ BELLE (endpoint) $100 \pm 0.25 \pm 0.50$ 2 4 [× 10⁻

Rare B Decays (Radiative/EW)

The B factory luminosity extends the search down to O(10⁻⁷).
 If the \u03c6K_S anomaly is true, radiative/electroweak B decays are sensitive to new physics.

Toru lijima, Weak Ir

B→K^(*)II, XsII

Both Belle and BaBar updated the results at LP03 with 140 and 113 fb⁻¹ data.

All K(*)II and Xsll signals are found !

\Rightarrow Next Target: Precise distribution; m_{\parallel} , A_{FB} !

SUSY Scenario vs B Decays

Goto, Okada, Shimizu, Shindou, Tanaka, PRD66, 035009 (2003) hep-ph/0306093

UT test

Direct CPV in $b \rightarrow s\gamma$

KEKB Strategy

Scenario under discussion

Toru lijima, Weak Interactions and Neutrinos Workshop -2003

Tevatron Run IIA

New pieces of information coming from CDF/D0

CDF/D0

Kevin Pitts @ LP03

Detectors

Both detectors

- silicon microvertex detectors
- axial solenoid
- central tracking
- high rate trigger/DAQ system
- → calorimeter & muon systems

CDF silicon detector installation

DØ fiber tracker installation

DØ

- → Excellent electron & muon ID
- Excellent tracking acceptance

CDF

- Silicon vertex trigger
- Particle ID (TOF and dE/dx)
- Excellent mass resolution

Kevin Pitts

B BR, lifetimes, mixing

Toward B_S Mixing

■ New measurement of $B_S \rightarrow D_S^+ \pi^-$ (CDF, 119pb⁻¹) w/ $D_s \rightarrow \phi \pi^+$ and $\phi \rightarrow K^+K^-$ Entries per 20 MeV/c 0 0 0 0 0 0 $Br(B_s \rightarrow D_s \pi^{\pm})$ $= (4.8 \pm 1.2 \pm 1.8 \pm 0.8 \pm 0.6) \times 10^{-3}$ sys f_s / f_d BR 1600ev / fb⁻¹, S / N ~ 2 Tagging efficiency $\mathcal{E}D^2 = 4\%$ Proper time resolution $\sigma_{1} \sim 67 fs$

 $\frac{\varepsilon D^2 \to 4\%}{\sigma_t \to 50 \, fs}$ lf

Kevin Pitts @ LP03 2σ sensitivity for $\Delta m_s = 15/ps$ w/ 0.5fb⁻¹ data. 5σ sensitivity for $\Delta m_s = 18/ps$ w/ 1.7fb⁻¹ data.

$B_s \rightarrow KK$

Charmless two-body B decays at Tevatron
 Combination of B→π⁺π⁻/K⁺π⁻, B_S→K⁺K⁻/π⁺K⁻
 Extract each component by fitting kinematics and PID(dE/dx).

 $B^{0} \rightarrow K\pi \quad 148 \pm 17 \pm 17$ $B^{0} \rightarrow \pi\pi \quad 39 \pm 14 \pm 17$ $B_{s} \rightarrow KK \quad 90 \pm 17 \pm 17$ $B_{s} \rightarrow K\pi \quad 3 \pm 11 \pm 17$

 $\frac{Br(B_s \to K^{\pm}K^{\mp})}{Br(B_d \to K^{\pm}\pi^{\mp})} = 2.71 \pm 1.15$

First observation ! $\Rightarrow \phi 3$ extraction for longer term

Toru lijima, Weak Interactions and Neutrinos

Future Hadron Machine Exp.

		LHCb		BTeV
$\sigma_{b\bar{b}}$		$500 \mu b$		$100 \mu b$
$\#b\bar{b}$		10^{12}		$1.5 imes 10^{11}$
$B_d \to J/\Psi K_S$	119K	$\sigma_eta\sim 0.6^\circ$	168K	$\sigma_{\sin 2eta} \sim 0.017$
$B_d \rightarrow \rho^0 \pi^0$			0.78K	$\sigma_{lpha} \sim 4^{\circ}$
$ \begin{cases} B_d \rightarrow \pi^+\pi^- \\ B_s \rightarrow K^+K^- \end{cases} $	27K 35K	$\sigma^*_{lpha}\sim 510^\circ$	$\substack{14.6K\\18.9K}$	$\begin{array}{l} \sigma_A \sim 0.03 \\ \sigma_A \sim 0.02 \end{array}$
$B_s \rightarrow D_s K$	8K	$\sigma_\gamma \sim 10^\circ$	7.5K	$\sigma_{\gamma-2\chi}\sim 8^\circ$
$B_s \rightarrow J/\Psi \phi$	128K	$\sigma_{2\delta\gamma}\sim 2^\circ$		
$B_s ightarrow J/\Psi \eta/\eta^\prime$			12.6K	$\sigma_{\sin 2\chi}\sim 0.024$

* Requires SU(3) modeling.

Summary/Remarks-1

How NP comes into B and K decays?

b→s loop (⇒ s→d loop

Summary/Remark-3

It is of great importance to confirm the Belle's ϕK_s anomaly.

In future, more interesting to see (esp. if the anomaly is true) Acp in many Penguin decays Many intersting CPV phenomena may come out !

 $K^{(*)}II$, XsII distributionsAcp in radiative decays $B \rightarrow D\tau v$ $\tau \rightarrow \mu \gamma$ Future

 $\begin{array}{cc} M_{II}, & A_{FB} \\ B \to K^* \gamma, b \to s\gamma, b \to d\gamma \end{array}$

 $\tau \rightarrow \mu \gamma$ Future Projects: BTeV, LHCb \triangleleft Super-Betc.Now the time to discuss the sensitivity for NP!

KEKB Strategy

Scenario under discussion

Toru lijima, Weak Interactions and Neutrinos Workshop -2003