<u>Non-SM Electroweak Symmetry Breaking</u> <u>Searches at the Tevatron</u>

19th International Workshop on Weak Interactions & Neutrinos Song Ming Wang University of Florida

for the CDF Collaboration

Outline :

•CDF, Run-I and Run-II

•Review results on CDF searches for Non-SM Electroweak Symmetry Breaking

•Summary

CDF in Run-I and Run-II

- •In Run-I (1992-1996) CDF used ~100pb⁻¹ data to investigate electroweak symmetry breaking in SM/Non-SM approach
 - Applied several important tools for these studies
 - • $e/\mu/\tau$ identification
 - •Good calorimetry for jet/MET measurements
 - •Tagging b,c jets

•Run-II upgrades :

- New data acquisition electronics to cope with higher luminosity
- •Extend lepton acceptance
- •Larger geometrical acceptance for silicon tracker
- •Have collected ~200pb⁻¹ data

Understanding the Run-II Detector

Run 162820 Event 7050764 Sun May 11 16:53:57 2003

Song Ming Wang, WIN'03, Lake Geneva, Wisconsin

Non-SM Electroweak Symmetry Breaking

Several models created to solve the hierarchy problem, and to explain the origin of EW symmetry breaking

•Extra Dimensions

Technicolor

•SUSY/MSSM

•Little Higgs

Review CDF results on searches for the predicted phenomena based on these models

Searches for Extra Dimensions

Extra Dimensions (ED)

- The large gap between EW and Planck scales is assumed to be due to the geometry of the extra dimensions
- The gap is narrowed by reducing the effective fundamental scale to $\sim 1 \text{ TeV}$
- •Only Graviton propagates in the ED, other SM particles are trapped in our 3-D brane
- In the compactified ED, the gravity expands into a series of Kaluza-Klein (KK) states

6

<u>Searches for Extra Dimensions (ADD)</u> <u>Direct G Emission (MET+jet)</u>

- •Search events with large MET and 1 or 2 jets
 - MET > 80 GeV
 - Et(jet1) > 80 GeV, Et(jet2) > 30 GeV (if 2nd jet present)
- •Reduce QCD multi-jets :
 - Δφ(MET, jets) > 0.3 rad (MET due to jet energy mis-measurement)
- Reduce W($\rightarrow l\nu$), Z($\rightarrow l^+l^-$) :
 - •Two highest energy jets not purely electromagnetic
 - •No isolated track
- •Remaining background from:
 - •Z(\rightarrow vv)+jets, W(\rightarrow *l*v)+jets (*l* : e, μ , τ)
 - •QCD
 - •tt, single t, diboson
- •#Observe=284, #Expected=274.1 +- 15.9

<u>Searches for Extra Dimensions (ADD)</u> <u>Direct G Emission (MET+jet)</u>

•No excess in observed events, thus excluded effective Planck scale (M_D)

	$M_D({ m TeV})$		
n	CDF (K=1.0)	D0 (K=1.0)	D0 (K=1.34)
2	1.00	0.89	0.99
4	0.77	0.68	0.73
6	0.71	0.63	0.65

Best limit from the Tevatron on search for direct graviton emission

Randall-Sundrum (RS) Model

•Hierarchy between EW and Planck scales is generated by a large curvature of the extra dimensions

- •G is localized in the Planck brane
- •The scale of physical phenomena on the TeV brane is $\Lambda_{\pi} = M_{Pl} e^{-kR_c\pi}$
 - *k*: parameter governs the degree of curvature

Search for RS ED at Tevatron

- •Virtual G exchange :
 - •Virtual contribution to scattering processes
 - •Spectrum of KK states are discrete, and unevenly spaced
 - •Look for bumps in M_{ee} , $M_{\mu\mu}$, M_{jj}

Searches for Extra Dimensions (RS)

Searches for Extra Dimensions (RS)

Searches for Technicolor

- •Technicolor is a dynamic version of the Higgs mechanism, does not contain elementary scalar boson
- •Introduce a new strong gauge force (technicolor) and new fermions (technifermions)
- •Technicolor acts between technifermions to form bond states
- •"Higgs" boson replaced by states of two techniquarks (technipion)

Previous CDF searches:

•
$$\omega_T \rightarrow \gamma \pi_T^0 \rightarrow \gamma b \overline{b}$$

• $\rho_T \rightarrow \pi_{LQ} \overline{\pi}_{LQ} \rightarrow \tau_-^+ \tau^- b \overline{b}$
 $\rightarrow c c V V$
 $\rightarrow b \overline{b} V V$
 $\rho_T^{\pm} \rightarrow W^{\pm} \pi_T^0 \rightarrow l V b \overline{b}$
 $\rho_T^0 \rightarrow W^{\pm} \pi_T^{\pm} \rightarrow l V b \overline{c}$
 $\rho_T^0 \rightarrow W^{\pm} \pi_T^{\pm} \rightarrow l V b \overline{c}$
 $\rho_T^0 \rightarrow W^{\pm} \pi_T^{\pm} \rightarrow l V b \overline{c}$
 $\rho_T^0 \rightarrow W^{\pm} \pi_T^{\pm} \rightarrow l V b \overline{c}$
 $\rho_T^0 \rightarrow W^{\pm} \pi_T^{\pm} \rightarrow l V b \overline{c}$
 $\rho_T^0 \rightarrow W^{\pm} \pi_T^{\pm} \rightarrow l V b \overline{c}$
 $\rho_T^0 \rightarrow W^{\pm} \pi_T^{\pm} \rightarrow l V b \overline{c}$
 $\rho_T^0 \rightarrow W^{\pm} \pi_T^{\pm} \rightarrow l V b \overline{c}$
 $\rho_T^0 \rightarrow W^{\pm} \pi_T^{\pm} \rightarrow l V b \overline{c}$

T T 4

<u>Searches for Technicolor</u> (Lepton+MET+jets)

- Search for color singlet ρ_{T} and π_{T} in lepton (*e* or μ) + MET + jets
- Select isolate *e* (Et>20 GeV) or isolate μ (Pt>20 GeV) in central region ($|\eta| < 1$)
- •MET>20 GeV
- •Only 2 jets, Et>15 GeV, |η|<2, at least one jet tagged as b-jet candidate
- Major background from:
 - $Wb\overline{b}$, $Wc\overline{c}$, Wc
- Set 95% CL exclusion region in $M(\pi_T)$ vs $M(\rho_T)$ plane

Run-II Technicolor Sensitivity (Lepton+MET+jets)

- Predicted reach for *L*~2fb⁻¹
- Assume the same selections and systematic uncertainty as in Run-I search, but double signal efficiency (due to larger coverage in lepton id, and b-jet tagging)

<u>Searches for Technicolor</u> (Di-jet)

Search for New Particles Decaying to Dijets

Di-jet

• Use results from the search for resonance at high di-jet mass to set limits for the mass of Color Octet Technirho

Exclude the mass range: 260<M<640 GeV (Run-II)

CDF Run-I exclusion: 260<M<480 GeV

Searches for Non-SM Higgs

Results on CDF searches for :

- •Higgs from SUSY/MSSM
- •Double Charged Higgs

Indirect (Disappearance) Search:

- •Observe if the di-lepton and lepton+jets top events (lepton : e, μ) are suppressed
- For given $\sigma(t \text{ tbar})$ and $\{M(H^+), \tan(\beta)\}$, how likely is it to observe N events
- Set exclusion regions in $\{M(H^+), \tan(\beta)\}$

Searches for Charged Higgs (MSSM)

Searches for Neutral Higgs (MSSM)

- $gg \rightarrow \phi$ ($\phi=h,H,A$)
- •Look at the channel $\phi \rightarrow \tau \tau$ with Run-I data (BR~10%)
- •Use high Et electron dataset (Pt>18 GeV), no Tau trigger
- •Select events with one hadronic τ and one isolated electron candidate
- •Observe no excess of events
- •Cannot set limit, since search is not sensitive enough due to low acceptance by the trigger

Implementation Tau Triggers in Run-II

Searches for Neutral Higgs (MSSM)

BR($\phi \rightarrow b\bar{b}$) ~ 90%

Event Selection:

- \geq 4 jets , $|\eta_{iet}| < 1.5$
- \geq 3 jets tagged as b-quark candidate
- ≥ 3 jets \tan_{55} . $\Delta \phi(bb) > 1.9$ (bb well separated) , $\sum_{\sigma \sigma} \frac{100}{90}$
- Signal acceptance:
 - $\bullet \sim 0.2\% 0.6\%$
 - Background: QCD, ttbar, W/Zbb, W/Zcc

• ϕ +b bbar : best discovery channel for new Fermilab Run-II luminosity baseline

Searches for Doubly Charged Higgs

• Doubly charged Higgs are predicted in models that contain Higgs triplets

- •Models w/ extension to Higgs sector of SM
- •Left-Right symmetric models
- •Supersymmetric Left-Right models
- In the Left-Right symmetric models, the Higgs triplets are one of the Higgs multiplets that breaks the symmetry between L and R handed weak interactions at low energy

Event Selection:

- Select H++/-- pair or singly produced
- •Search for 1 pair of same sign *ee*, or $\mu\mu$, or $e\mu$
 - same sign leptons decay contains low SM backgrounds, provide clean environment for new physics search
- Datasets : inclusive high Pt electron/muon samples (~90 pb⁻¹ for both)

Searches for Doubly Charged Higgs

•No excess in observed events

•Example in the same sign $e\mu$ for $M_{e\mu}$ >80 GeV

•#Obs=1, #Bgd= $3.2_{-0.9}^{+1.6}$

Exclusion mass region :

- *ee* : no exclusion
- $\mu\mu$: $M_{H^{++/--}} < 110 \text{ GeV}$
- $e\mu$: $M_{H^{++/--}} < 110 \text{ GeV}$

Summary

- •Non-SM Electroweak Symmetry breaking searches have been performed in several channels at CDF
- •No evidence of deviation from SM expectation observed so far
- •Limits are set for various Non-SM parameters
- •CDF Run-II has started successfully. The upgrades will improve the sensitivities to these searches
- Integrated luminosity of data collected at sqrt(s)=1.96 TeV is ~2X that of Run-I =>STAY TUNED for more NEW results in the next winter conferences!!!