
CPV and Higgs Physics Generalities and a Specific Example Stephen Mrenna **WIN03**

1/19

M

Fermilab, Computing Division, Simulations Group

 $\begin{array}{c} \texttt{mailto:mrenna@fnal.gov}\\ \mathcal{CPX} \text{ work with } M. \text{ Carena, J. Ellis, A. Pilaftsis, C.E.M. Wagner}\\ (NPB659, \text{hep-ph}/0211467)\end{array}$

\mathcal{CPV} Phenomenon

- rare (weak) effect in K and B(?) meson decays
- necessary condition for baryogenesis
- not necessarily related

Origin Unclear: most scenarios focus on Higgs sector

 $\mathcal{L}_{\mathsf{Yuk}} = Y_{ij}Q_{Li}\Phi_1 U_{Rj} + \widetilde{Y}_{ij}Q_{Li}\Phi_2 D_{Rj} + h.c.$ $Y_{ij} \neq Y_{ij}^{\dagger} \quad \widetilde{Y}_{ij} \neq \widetilde{Y}_{ij}^{\dagger} \quad \mathsf{Explicit}$ $\langle \Phi_1 \rangle = v_1 \quad \langle \Phi_2 \rangle = v_2 e^{i\xi} \quad \mathsf{Spontaneous}$

Higgs physics beyond the SM may use either source

• focus here on *Explicit* CPV

Lessons of SM \mathcal{CPV}

- 1. SM has Explicit breaking
- 2. \mathcal{CPV} occurs in charged current
- 3. FCNC related to \mathcal{CPV}
- 4. single source ($\delta_{\rm CKM}$)
 - $\delta_{\text{CKM}} \sim \mathcal{O}(1)$
 - weakness related to small mixing angles
- 5. SM alone cannot explain EW-Baryogenesis

BSM Physics may or may not follow this pattern

- there may be (will be?) multiple sources of \mathcal{CPV}
- Spontaneous \mathcal{CPV} requires an extended Higgs sector

• suppress FCNC $\Rightarrow \mathcal{CPV}$ at loop-level \Rightarrow light scalar

Suppress FCNC & $CPV \Rightarrow \Phi_1 \rightarrow \Phi_1 \quad \Phi_2 \rightarrow -\Phi_2$ • $\lambda_6 = \lambda_7 = m_{12}^2 = 0$

• soft violation: $m_{12}^2 \neq 0$

Tadpole $\langle \frac{\partial \mathcal{L}_V}{\partial a} \rangle = 0$ relates sources of phases $\operatorname{Im}(m_{12}^2) = \operatorname{Im}(\lambda_5)v_1v_2 + \frac{1}{2}[\operatorname{Im}(\lambda_6)v_1^2 + \operatorname{Im}(\lambda_7)v_2^2]$

WIN03

Loop-Level \mathcal{CPV}

Complex m_{12}^2, λ_i can be generated at loop-level

Hard to address without explicit models

• SUSY can have complex soft-breaking parameters

In general, will be correlated with loop-level \mathcal{CPV} amplitudes

• In SUSY, different flavor structure

Main effect on Higgs sector may not result in a \mathcal{CPV} observable

concentrate on neutral Higgses, particularly light ones

Of course, there *are* direct \mathcal{CPV} effects

• $\Gamma(H^+) \neq \Gamma(H^-)$ (CC)

• anomalous increase in $h \rightarrow d\bar{d}$ (Demir)

Higgs Phenomenology in the MSSM

- Supersymmetry fixes the particle content and interactions
 - At tree level, $\lambda_{5,6,7} = 0 \Rightarrow$ no \mathcal{CPV}
- (soft) Susy breaking (SSB) induces particle-sparticle mass splittings
 - terms of dimension mass (μ, A, m_0, M_i)
- SM Higgs \rightarrow 2HDM with 3 neutral, 1 charged scalar
 - $m_h^2 \sim |M_Z \cos(2\beta)|^2 + \text{(stuff } \propto \text{SSB)}$
- "Always" known that SSB terms could be complex
 - $\mathcal{O}(40)$ phases possible
 - Some phases can be rotated away
 - Relative phases (e.g. $\arg(A_{top}\mu^*), \arg(M_{\widetilde{g}}\mu^*)$) remain

Explicit CPV

Complex Soft SUSY-Breaking parameters $\Rightarrow \mathcal{CPV}$

- \mathcal{CP} no longer labels Higgs mass eigenstates
 - Higgses have scalar and pseudoscalar components
 - Different couplings, mixings, and mass relations
- Phases will affect other observables
 - Electric Dipole Moments (EDMs) of electron/neutron
 - Several ways to avoid contradictions with data
 - Heavy (M > 1 TeV) Squarks for $1^{st} 2^{nd}$ generations
 - Cancellations between different contributions
 - 3rd generation alone can yield observable contributions
 - Cancellations are also possible here
- Effects considered here are not \mathcal{CPV} , but a consequence of \mathcal{CPV} in the full theory

References

Incomplete list

- Pilaftsis and Wagner [hep-ph/9902371]
- Carena, Ellis, Pilaftsis, and Wagner [hep-ph/0003180]
- CEPW [hep-ph/0009212]
- Choi, Hagiwara, Lee, Drees, Song(s): Some phenomenology
- Gunion, Kalinowski, Grzadkowski: Generic 2HDM models
- Demir; Ibrahim-Nath: Neutral decays
- Heinemeyer-Weiglein: Diagrammatic approach

Mass² Matrix ($2 \times 2 \oplus 1 \times 1 \rightarrow 3 \times 3$)

Diagonalization yields mass eigenstates and mixing

- Most important parameter is still Stop Mixing
 - $|X_{top}| = |A_{top} \mu^* / \tan \beta|$
- Mixing between Even/Odd \mathcal{CP} is One-Loop phenomena
 - Important when some Even components are small
 - Requires large μ , A and sizeable phases $\phi_A = \arg(A_{top}\mu^*)$

$$\mathcal{M}^2 = \begin{pmatrix} ee & ee & eo(1) \\ ee & ee & eo(2) \\ eo(1) & eo(2) & oo \end{pmatrix}$$
$$eo(1) \sim v^2 \frac{3}{192\pi^2} \bar{\mu}^2 \sin 2\phi_A$$
$$o(2) \sim v^2 \frac{3}{192\pi^2} \bar{\mu} \bar{A} (6 - \bar{A}^2) \sin \phi_A$$

 $\begin{array}{l} \mathcal{CPX} \text{ Benchmark} \\ |\mu|:|A|:M_{\mathrm{SUSY}}=4:2:1 \\ \text{ Large Hierarchy} \\ \text{Not a high-scale prediction} \end{array}$

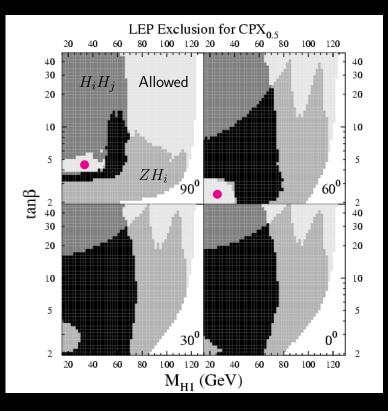
Couplings

- $\sin \alpha, \cos \alpha \rightarrow O_{IJ}$ (I, J = 1, 2, 3)
- $hZZ, HZZ \rightarrow$ Three Higgses share W/Z coupling at tree level
- $ZhA \rightarrow ZH_IH_J$ couplings for all I, J
- Af f
 → All Higgses can have a pseudoscalar coupling to fermions
 Threshold is β instead of β³ suppressed
 - $g_{H_iZZ} = O_{1i} \cos \beta + O_{2i} \sin \beta$ $g_{H_idd}^S = O_{1i} / \cos \beta (1 + \Delta)^{-1}$ $g_{H_idd}^P = -O_{3i} \tan \beta (1 + \Delta)^{-1}$ $g_{H_iuu}^S = O_{2i} / \sin \beta$ $g_{H_iuu}^P = -O_{3i} / \tan \beta$

 Δ is one-loop [gluino-sbottom,higgsino-stop] but can be $\mathcal{O}(1)$

Sum Rules

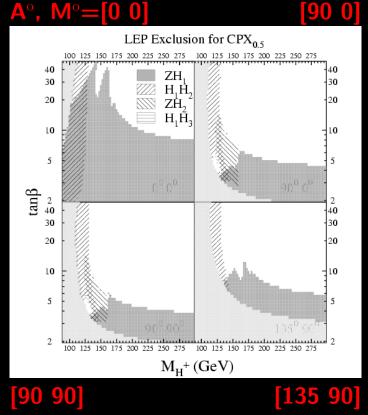
Couplings are inter-related


- Really radical behavior not possible
- SM-like Higgs must have some scalar coupling to U,D
- Pseudoscalar coupling to Top suppressed
- Cannot suppress U and D couplings at once
- Relations between ZZH_k and ZH_iH_j couplings

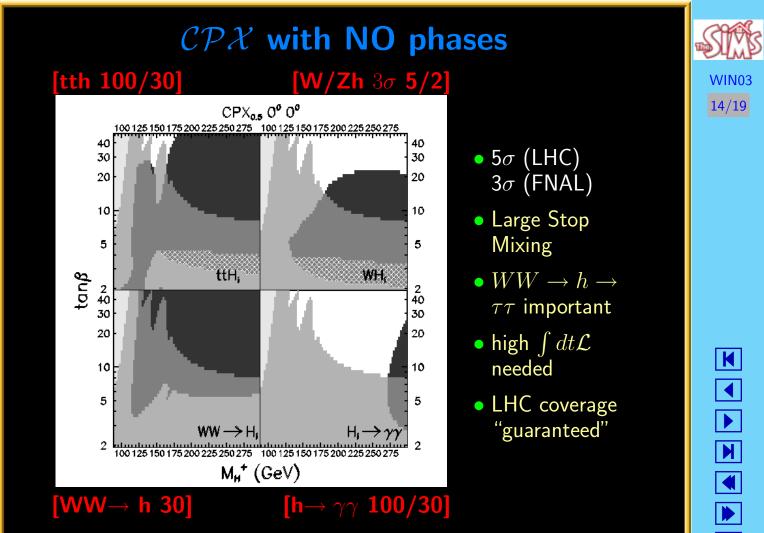
 $g_{H_iZZ} = \cos^2 \beta g_D^S (1 + \Delta) + \sin^2 \beta g_U^S = \epsilon_{ijk} g_{ZH_jH_k}$ $g_D^P = g_U^P \tan^2 \beta (1 + \Delta)^{-1}$ $1 = \cos^2 \beta (1 + \Delta)^2 [(g_D^S)^2 + (g_D^P)^2] + \sin^2 \beta [(g_U^S)^2 + (g_U^P)^2]$ $\Delta \text{ expected to be largest for 3rd generation}$

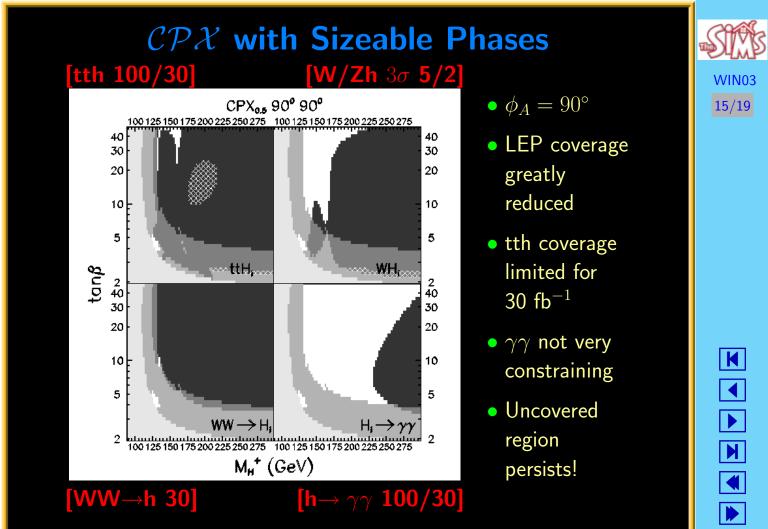


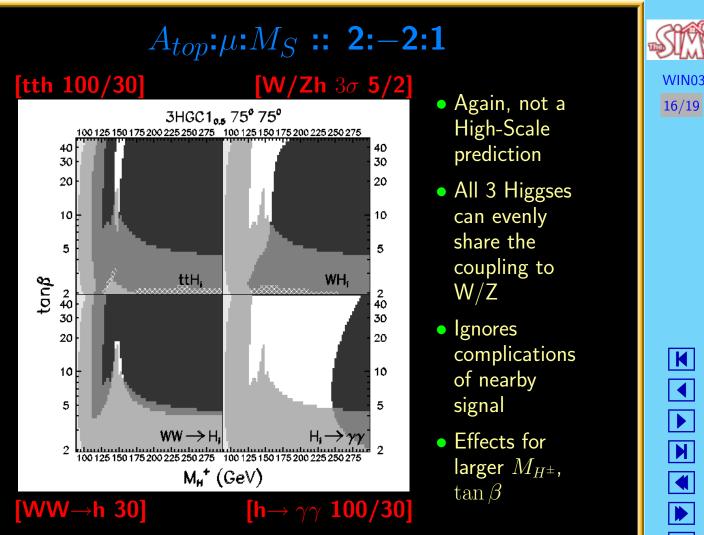
LEP Results for CPX

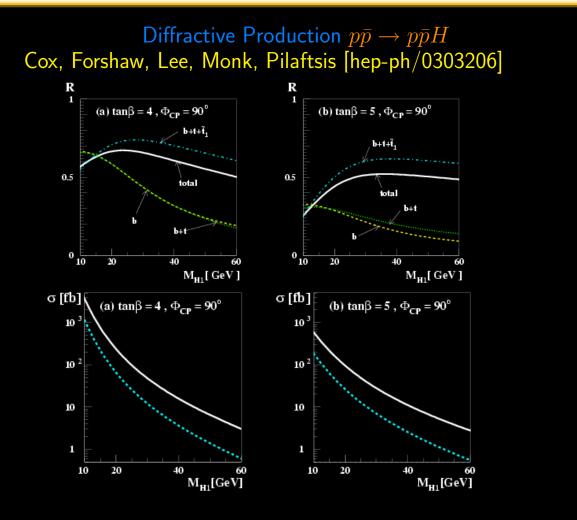


- $H_1 < H_2 < H_3$
- $Z^* \rightarrow ZH_2$ is dominant production mechanism
- $H_2 \rightarrow H_1 H_1$ can be dominant decay mode
- Allowed
- $e^+e^- \rightarrow ZH_i$
- $Z^* \to H_i H_j \to 4b$
 - No dedicated 6 b analysis (OPAL)
- Black = overlap


LEP Results for \mathcal{CPX}




- Large Phase $\arg(A) \sim \frac{\pi}{2}$ responsible for holes
- Light $M_{H^{\pm}} \sim 125 \text{ GeV}$
- Smallish $\tan\beta \sim 4-5$
- $\arg(M)$ less important
- Generally less coverage than w/o \mathcal{CPV}





K ◀ M

WIN03 18/19

Concluding Remarks on \mathcal{CPV}

- MSSM Higgs sector with explicit \mathcal{CPV} may be challenging
 - Light scalars consistent with data
- Studied several benchmarks (focussed on SM-like signatures)
- ttH and VV \rightarrow H afford most coverage
 - Uncovered regions remain
 - These results may be too optimistic
 - Signals are the least studied (though not neglected)
 - No studies of effects of nearby signals
- $H_i \rightarrow \gamma \gamma$ not very significant
- $gg \rightarrow H_i \rightarrow Z^*Z^*$ never relevant in our benchmarks

- Do any high-scale models predict \mathcal{CPX} behavior?
 - Do some high-scale constraints need to be relaxed?
- How will we really know \mathcal{CPV} is affecting the Higgs sector?
 - Correlate with other observables (Muryama, Pierce \rightarrow hard)?
 - Measure ϕ_{μ} at a LC?
- Effects on Heavy Higgses needs more work
- Not much correlation with other \mathcal{CPV} observables

Phenomena	Most Important Sparticle
	~
Higgs Sector	t
K,B mesons	\widetilde{b}
EW-Baryogenesis	\widetilde{C}_i

