

Future Solar Neutrino Experiments

WIN'03 Lake Geneva, WI

Mark Chen

Queen's University & The Canadian Institute for Advanced Research

Future Solar Neutrino Experiments

o what can they measure?

- solar physics
- neutrino physics
- o what should they measure?
- o very brief survey of future experiments

o any new experiment can yield a surprise

- Q: why make a measurement?
- A: because you should take a look if you can!

SNO Neutral Current Detectors

- ☆ desalination polishing mode
 ☆ NCD pre-deployment welding, preparations taking place
 ☆ NCD deployment: Winter 2004
- NCD's act as a neutron
 "poison" → allowing
 cleaner look at low-energy
 CC spectral distortions
- event-by-event CC-NC separation eliminates statistical correlations

what will new SNO data tell us?

- o spectral shape distortion
- o CC/NC ratio \rightarrow direct measure survival probability
- o day/night asymmetry

• CC-only theoretical, recoil electron spectrum (w/detector resolution)

 $\Delta m^2 = 5 \times 10^{-5} eV^2$

 $\Delta m^2 = 6 \times 10^{-5} eV^2$

 $\Delta m^2 = 7 \times 10^{-5} eV^2$

 $\Delta m^2 = 8 \times 10^{-5} eV^2$

what will new SNO data tell us?

- o spectral shape distortion
- o CC/NC ratio \rightarrow direct measure survival probability
- o day/night asymmetry
- o day/night asymmetry would be evidence for MSW ν_{e} regeneration
- A_{ND} helps to specify Δm^2 • SNO pure D_2O result: $A_e = 7.0 \pm 5.1\%$

Solar + KamLAND (3 yr)

 1σ contours

includes new SNO salt results

all ν fluxes free, subject to luminosity constraint

future KamLAND data will improve Δm^2 constraints; mixing angle from future SNO data...

from Bahcall and Peña-Garay, updated from hep-ph/0305159

Solar Neutrino Energy Spectrum

Future Solar v Experiments

o low-energy *pp*, ⁷Be (pep? CNO?)

My Random Thoughts

- o pp CC: infer from Ga experiments... especially if you know the $^7\text{Be}\ \nu_e$ contribution
- o pp ES: 1% source and known cross section \rightarrow helps to constrains θ_{12} and sub-dominant
- o ⁷Be CC: useful to combine with ⁷Be ES
- o ⁷Be ES: useful to combine with ⁷Be CC^J
 - otherwise, it's astrophysics
- o CNO: interesting astrophysics

for neutrino physics

More Random Thoughts

- o for ⁷Be CC and ES give total flux and survival probability
- o for *pp* you can rely on the SSM flux prediction...CC or ES alone is sufficient
- ⁷Be ES by itself (Borexino) does not improve knowledge of oscillation parameters much beyond present
- value of Borexino (nominal ⁷Be) helps to constrain *pp* CC
- value of LENS (nominal pp CC) is actually to offer ⁷Be CC as a companion for ⁷Be ES

Simulating 5% ⁷Be Measurement

from Bahcall and Peña-Garay, hep-ph/0305159

Borexino Detector

inside the inner detector stainless steel sphere

New Low-Energy Solar v Detectors

pp ES Experiments

- o HERON
 o CLEAN
 o XMASS
 o Solar TDC (UEUL 47)
- o Solar TPC (HELLAZ)

General Properties

- ≻Total Helium mass 20 (28) tonnes at 50mK.
- > Detection: wafer calorimeters above liquid.
- Scintillation: 35% of E_e into 16 eV UV
 (λ_{Rayl.} > 200 meter).
- Scintillation/rotons or Scintillation/e-bubbles. (complement & redundancy)
- > Event location: coded aperture array; few cm.).
- Fiducial volume variable: 1.25 evts/(day-tonne) SSM E_{recoil} > 50 keV.
- > No internal backgnd (superfluid self-cleaning).
- > No radon diffusion at low temperature.
- > Helium immune to muon spallation/capture.
- External backgrounds from Gammas : Deep site & Shielding Material Event signature (coded aperture) Fiducial cuts

CLEAN

10 meters

Solar TPC (4000 m³, 7 tons of He)

XMASS – liquid xenon scintillation detector for solar-v, DBD & DM

•Detection reaction: ES (v+e⁻ \rightarrow v+e⁻) •23 t (10 t fid.) detector •30cm self-shield (ρ =3.06 g/cm³) •1350 3^{''} PMTs •42,000 scintillation photons/MeV

•No inactive buffer (23t volume active)

XMASS: expected ν-signal and 2ν-ββ background of Xe-136

XMASS: Θ_{sol} – sensitivity

Simulating 3% pp Measurement

- must achieve 3% or better measurement to start constraining the oscillation analysis
- ES superior to CC since CC will have cross section uncertainty at least 1%, likely much higher

from Bahcall and Peña-Garay, hep-ph/0305159

$pp \theta_{13}$ Sensitivity

o marginal improvement in θ_{13} limit o 3σ limit goes from current $\sin^2\theta_{13} < 0.05$ down to $\sin^2\theta_{13} < 0.036$

from Bahcall and Peña-Garay, hep-ph/0305159

pp (⁷Be) CC Experiments

o LENS o MOON

LENS:Low Energy Neutrino Spectroscopy

Method

charged current (CC) transition (inverse
 EC) to excited level (V_e – only!)

⇒Complement to BOREXINO/XMASS (ES)

•low-energy threshold: pp-, Be-7,...

 \mathbf{v}_{e} – tag to discriminate against background \mathbf{v}_{e} –target (=Yb, In) loaded into liquid scintillator

MOON - ¹⁰⁰Mo CC detection for solar-v, DBD

Challenge: detector granularity ~ 1/10⁹ required

pep Solar Neutrinos

- solar model flux
 uncertainty is ±1.5%
- v-e⁻ scattering cross
 section (no uncertainty)
 o rate measurement at
- rate measurement at the O(%) level possible
- ~3000 events per year
 in 600 fiducial tons
 (LMA oscillated)

Neutrino Energy (MeV)

pp and *pep* solar neutrinos are standard candles

Solar pep Experiment

- o fill SNO with a liquid scintillator after we're done with the heavy water
- o observe *pep* neutrino-electron scattering recoil edge
- Borexino (and KamLAND) liquid scintillator purification techniques combined with SNO low-background experience

pep Recoil Electron Spectrum

⁷Be, pep and CNO Recoil Electron Spectrum

pep Solar Neutrino Backgrounds

- KamLAND (and to a lesser extent Borexino) cannot detect *pep* solar neutrinos due to underground ¹¹C cosmogenic production
 - 20 minute half-life of ¹¹C cannot be vetoed
 - positron decay guarantees 1 MeV energy deposited, right in the pep v-e⁻ recoil window
- o CNO neutrinos are a background
 - good energy resolution desired to see clear "recoil edge" for monoenergetic pep ν
- radiopurity requirements likely to be challenging
 - U, Th, K, ²¹⁰Bi (Rn daughter) $Q_{\beta} = 1.2 \text{ MeV}$
 - ⁸⁵Kr, ²¹⁰Po (plaguing KamLAND) not a problem

¹¹C Cosmogenic Background

from KamLAND proposal

Precision θ_{12} in SNOLAND? SNOrexino?

- o 70 muons per day thru SNO versus 10,000 muons per day thru Borexino at Gran Sasso! (and more through KamLAND)
- o larger detector (than Borexino) helps to detect smaller *pep* solar neutrino flux
- takes advantage of SNOLAB's deep site; possible conversion of the existing SNO detector for a future, new measurement

Concluding Question

o how well do we need to measure θ_{12} and $\Delta m^2{}_{12}?$