Systematic Errors in Reactor Neutrino Experiments

The challenge of measuring θ_{13}

Karsten M. HeegerLawrence Berkeley National Laboratory

Outline

Past and Present Experiments KamLAND CHOOZ

Overview of Backgrounds and Systematics

Detector Systematics Backgrounds

Proposals for Next Generation Experiments

Kashiwazaki CHOOZ II? Diablo Canyon, Wolf Creek

absolute measurements

- 1 fixed detector
- 1 fixed detector

relative measurements

3 fixed detectors2 fixed detectors2+ detectors with variablebaseline

rate vs shape measurements of $\theta_{\rm 13}$

KamLAND - Kamioka Liquid Scintillator Antineutrino Detector

Uses reactor neutrinos to study $\overline{\nu}$ oscillation with a baseline of L \sim 140-210 km

KamLAND studies the disappearance of \overline{v}_e and measures • interaction rate

energy spectrum

Systematics in an Absolute Measurement

kinetic energy spectrum

- thermal power
- fuel composition and time dependence
- \rightarrow number of fissions (v)

x detector response function

- target volume/mass
- reaction cross-section
- candidate event selection
 detection efficiency
- energy response and threshold
- time variation of detector response
- backgrounds
 - physics events
 - radioactivity
 - cosmic rays

correlated accidental

KamLAND - Systematic Uncertainties

E > 2.6 MeV

	%	
Total liquid scintillator mass Fiducial mass ratio	2.1 4.1 FV	 volume calibration
Energy threshold	2.1	 energy calibration or analysis w/out threshold
Tagging efficiency Live time	2.1 0.07	 detection efficiency
Reactor power Fuel composition	2.0given1.0diffic	n by reactor company, cult to improve on
\overline{v}_e spectra cross section	2.5 <i>theo</i> 0.2	retical, model-dependent
Total uncertainty	6.4 %	
Karatan Haagar PNI	Antohor 7, 2002	

Observ	ved	54 events 162 ton•yr, $E_{prompt} > 2.6$ MeV	Excludes <u>physics background</u> from geo-v
Expect	ed	86.8 ± 5.6 events	
Backgr	round	1 ± 1 events	
	accidental ⁹ Li/ ⁸ He fast neutron	0.0086 ± 0.0005 0.94 ± 0.85 < 0.5	Measured: ∆t _{pd} =0.02-20 s. Confirmed by τ within 3%. From observed n signal and known neutron production in

rock.

Note: error from background << total systematic error

Evidence for Reactor $\overline{v_e}$ Disappearance

Chooz

Karsten Heeger, LBNL

parameter

reaction cross section

energy released per fission

number of protons

detection efficiency

reactor power

combined

relative error (%)

0.8%

1.5%

0.7%

 $\frac{0.6\%}{2.7\%}$

1.9% theor.

Table 10. Contributions to the overall systematic uncertainty on the absolute normalization factor.

Chooz Systematics

Ref: Apollonio et al., hep-ex/0301017

kinetic energy spectrum	2.1%
detector response	1.7%
total	2.7%

Table 6. Summary of the neutrino detection efficiencies.

	selection	$\epsilon(\%)$	rel. error (%)
	positron energy [*]	97.8	0.8
neutron capture:	positron-geode distance	99.9	0.1
· <	neutron capture	84.6	1.0
lowest efficiency, largest relative error	capture energy containment	94.6	0.4
	neutron-geode distance	99.5	0.1
	neutron delay	93.7	0.4
	positron-neutron distance	98.4	0.3
	neutron multiplicity [*]	97.4	0.5
	combined [*]	69.8	1.5
			-

*average values

Absolute measurements are difficult!

Partial cancellation of systematic errors in relative measurement

Concept of a Reactor Neutrino Measurement of θ_{13}

scintillator \overline{v}_{e} detectors

 $\overline{\nu}_{e} + p \rightarrow e^{+} + n$

coincidence signal prompt e⁺ annihilation delayed n capture (in μs)

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E_v} + \left(\frac{\Delta m_{21}^2 L}{4E_v}\right) \cos^4 \theta_{13} \sin^2 2\theta_{12}$$

- disappearance experiment
- look for rate deviations from 1/r² and spectral distortions
- observation of oscillation signature with 2 or multiple detectors
- baseline O(1 km), no matter effects

Reactor Neutrino Measurement of θ_{13}

Systematics in a Relative Measurement

kinetic energy spectrum

• thermal power \rightarrow number of fissions (v)

- fuel composition and time dependence

detector response function

Detectors are never "identical". Only partial cancellation of systematic errors.

Χ

Event Identification: Positron Detection

Fiducial Volume

FV cut requires position reconstruction (cannot be controlled at the O(%) level), or accurate knowledge of target mass.

Fiducial Volume Boundary

(1% in CHOOZ based on MC)

non-scintillating buffer:γ's can escape without being detectedscintillating buffer:full e+ energy detected within the target,
but e+ efficiency non zero outside the target volume

Energy Threshold Effect

(0.8% in CHOOZ)

(0.8% in CHOOZ)

 $E_{th} > E_{min}$: systematics due to threshold

 $E_{th} < E_{min}$: no systematics on energy threshold

start of the spectrum may provide calibration point between near and far detector

will allow measurement of background at low energy (<1 MeV)

→ lower threshold requires lower backgrounds(accidental + correlated)

effects will largely cancel in ratio of 2 detectors

Event Identification: Neutron Detection

Energy Window

Gd (8 MeV γ 's) vs H₂ (2.2 MeV), loaded vs unloaded liquid scintillator

ratio of Gd/H_2 capture (~80% on Gd) error will depend on detector geometry

Fiducial Volume Boundary

non-scintillating buffer:	γ 's can escape without being detected
scintillating buffer:	full e ⁺ energy detected within the target, but e+ efficiency non zero outside the target volume

effects will largely cancel in ratio of 2 detectors

Distance Cut $(d(e^+-n) < 100 \text{ cm})$

(0.1% in Chooz)

distance cut requires position reconstruction, cannot be controlled at the O(%) level

not required if accidental background very low

Time Cut(neutron capture time)(0.4% in Chooz)(non) exponential behavior of neutron time capture on Gd and H_2 \rightarrow Gd may increase systematics

no need for Gd in case of lower accidental backgrounds

effects will largely cancel in ratio of 2 detectors

Backgrounds in a Reactor Neutrino Experiment

Goal: error from background << total systematic error

Geophysical anti-v_e's

Background from radioactivity

rocks, detector material, water shielding, scintillator

Background induced by cosmic rays

- radioactive nuclei produced in the detector
- neutrons induced by muons in detector & rocks

depends on depth

Correlated

U-chain: Radon daughters ²¹⁴Bi-²¹⁴Po decays ($\tau \sim 237 \ \mu s$) \rightarrow mimick ν tag E_{α} =0.8 MeV (quenched) \rightarrow >10 σ from E_{d} =2.2 MeV (σ = 5% @ 1 MeV)

Accidental

Liquid Scintillator	⁴⁰ K	<< 10-5	(ng/g) for KamLAND
-	²³⁸ U	<< 10-5	
	²³² Th	<< 10-5	
PMTs + Concentrators	⁴⁰ K	80	
	²³⁸ U	480	
	²³² Th	470	
Acrylic	⁴⁰ K	0.008	
-	²³⁸ U	0.008	
	²³² Th	0.05	
Passive Shield (water)	⁴⁰ K	~1	
	238U	~1	may be able to use
	²³² Th	~1	low-background
Rock	⁴⁰ K	1500	
	²³⁸ U	1600	concrete
	²³² Th	3800	

Muon Flux Underground

Muon-Induced Production of Radioactive Isotopes in LS

	Isotope	Τ _{1/2}	E _{max} (MeV)	Туре	
β-	¹² B	0.02 s	13.4	Uncorrelated	
	¹¹ Be	13.80 s	11.5	Uncorrelated	
	¹¹ Li	0.09 s	20.8	Correlated	
	⁹ Li	0.18 s	13.6	correlated: β-n cascade, τ~few 1	00ms.
	⁸ Li	0.84 s	16.0	Only ⁸ He, ⁹ Li, ¹¹ Li (ins	stable
	⁸ He	0.12 s	10.6	isotopes).	
	⁶ He	0.81 s	3.5	Uncorrelated	
β⁺, EC	¹¹ C	20.38 m	0.96	uncorrelated:	
	¹⁰ C	19.30 s	1.9	single rate dominated	I by "C
	°С	0.13 s	16.0	Uncorrelated	
	⁸ B	0.77 s	13.7	Uncorrelated	
	⁷ Be	53.3 d	0.48	Uncorrelated	
				rejection through muon tr	acking

Muon-Induced Neutrons

Muons in passive (water) shielding

Muon preceding a neutron (need to have less than 0.1% of this background) Muon track used for discrimination

Muons in surrounding rocks

From high energetic shower developing in the rocks (up to GeV) From (α,n) reactions (few MeV)

Use muon track in outer veto for estimate but no complete discrimination Passive and active shielding to be optimized

Neutron Production in Rock

Proposals for Relative Measurements

Kashiwazaki: Proposal for Reactor θ_{13} Experiment in Japan

Kashiwazaki - 7 nuclear power stations, World's most powerful reactors

- requires construction of underground shaft for detectors

Kashiwazaki: Proposal for Reactor θ_{13} Experiment in Japan

Kashiwazaki: Systematics

	CHOOZ	Kashiwazaki
Detector systematics	1.7% →	1.1%
Far/near ratio of detector systematics	N/A	0.5%-1%
Far/near ratio of flux systematics	N/A	0.2%
Total		< 1%

CHOOZ II (?): Systematics

A	_			distance = 1.0 km
Systematics	Error	CHOOZ	(2 det, lower	
Popotor Complex	cross section/fission	1.9%	JKGU)	
	power	0.7%	-	-
	E/fission	0.6%	-	Chooz Underground Neutrino Laborato
		2.1%	<< 1%	A defines, Marce
Detector	scintillator density	0.1%	-	+difficult with Gd
	target volume	0.3%	- (δV)	
	% H	1.2%	-	+difficult with Gd
	Fiducial volume boundary	1.0%	-	Scint. buffer
		2.5%	<< 1%	
Analysis Cuts	e ⁺ energy	0.8%	No threshold: 0%	scint. buffer
	e+ pos. cut / vessel (30cm)	0.1%	-	
E _e +<8 Mev	n capture	1.0%	-	scint buffer
6 < E _n (MeV) < 12	n energy	0.4%	-	Gd 8 MeV γ's
d(e+-geode) < 30cm	n pos. cut / vessel (30 cm)	0.1%	-	
d(n-geode) < 30cm d(e ⁺ -n) < 100 cm 2 < n delay < 100 us	(e+-n) distance	0.3%	No distance cut: 0%	
	(e+-n) time delay	0.4%	-	No Gd → ~0%
n multiplicity = 1	n multiplicity	0.5%	better	
		1.5%	<< 1% ?	rate-based

Chooz B Nuclear Power Station 2 x 4200 MWth

∎ **s**∎∎

J.

measurement

Reactor Experiments with Variable Baseline

Option II:

Tunneling into Hillside

Flux Systematics with Multiple Reactor Cores

$$\Phi_{i} = \phi_{A}^{0} \frac{1}{R_{A}^{2}} P_{A} + \phi_{B}^{0} \frac{1}{R_{B}^{2}} P_{B}$$

Indivual reactor flux contributions and systematics cancel exactly if

Condition I: $\frac{R_A^2}{R_B^2} = const.$ $1/r^2$ fall-off of reactor flux the same for all detectors.Condition 2: $P_A \cong P_B \cong P$ Survival probabilities are approximately the same

 \rightarrow Approximate flux cancellation possible at other locations

	Relative Error Between Detector 1 and 2		
	rate	shape	
Relative flux error (1%)	< 0.6%	< 0.01%	
Reactor core separation (100 m)	< 0.14%	< 0.1%	
Finite detector length (10 m)	< 0.2%	< 0.1%	

 \rightarrow Shape analysis largely insensitive to flux systematics.

 \rightarrow Distortions are robust signature of oscillations.

Tunnel with Multiple Detector Rooms and Movable Detectors

- Modular, movable detectors
- Volume scalable
- $V_{\text{fiducial}} \sim 50-100 \text{ t/detector}$

Experimental Systematics

Best experiment to date: CHOOZ

-		
	parameter	relative error (%)
-	reaction cross section	1.9%
	relative fiducial vol.	~ 0.3%
rel	detection efficiency	≤ 1%
	reactor power	0.7%
	energy released per fission	0.6%
	combined	2.7%

Reactor Flux	 near/far ratio, choice of detector location 	σ_{flux} < 0.2%
Detector Efficiency	 built near and far detector of same design calibrate <i>relative</i> detector efficiency → <i>variable</i> baseline may be necessary 	σ _{rel eff} ≤ 1%
Target Volume &	 no fiducial volume cut 	$\sigma_{target} \sim 0.3\%$
Backgrounds	 external active and passive shielding for correlated backgrounds 	σ _{acc} < 0.5% σ _{n bkgd} < 1%
Note: list not comprehensive	Total	σ _{syst} ~1-1.5%
Karsten Heeger, LBNL	WIN03, October 7, 2003	

Past and Present Reactor Neutrino Experiments

A Future 2-Detector Experiment

θ_{13} Sensitivity Scaling with Backgrounds and Exp. Errors

Ref: Huber, Winter, Linder et al.

Future Constraints on θ_{13}

Experiment	sin²(2θ ₁₃)	θ_{13}	When?
CHOOZ	< 0.11	< 10	
NUMI Off- Axis (5 yr)	< 0.006-0.015	< 2.2	2012
JPARC-nu (5 yr)	< 0.006-0.0015	< 2.3	2012
MINOS	< 0.06	< 7.1	2008
ICARUS (5 yr)	< 0.04	< 5.8	2011
OPERA (5 yr)	< 0.06	< 7.1	2011
KR2DET (Russia)	< 0.016	< 3.6	?
Kashiwazaki (Japan)	< 0.026	< 4.6	[2008]
Penly/Cruas (France)	< 0.025	< 4.5	[2010]
Diablo Canyon (US)	< 0.01-0.02	< 2.9	[2009]

Upper limits correspond to 90% C.L.

Summary: Reactor Measurement of θ_{13}

• Reactor neutrino oscillation experiment is promising option to measure θ_{13} and gives clean measurement of $\sin^2 2\theta_{13}$ (no degeneracies, no matter effects).

• Sensitivity of $\sin^2 2\theta_{13} \sim 0.01$ comparable to next-generation accelerator experiments. Complementary to long-baseline program. Allows combined analysis of reactor and superbeam experiments.

• Measurement will be systematics limited. Do not expect to go beyond $sin^22\theta_{13} \sim 0.01$.

- Minimum setup: 2 detectors, overburden, and muon veto.
- Better to have 2 or 3 detectors and variable baseline.
- Be careful of detector design and backgrounds.