http://quark.phy.bnl.gov/~dawson/win03.pdf

Progress in Electroweak Symmetry Breaking

• It's not just the Higgs....

Weak Interactions and Neutrinos 03

Sally Dawson BNL October, 2003

SM works well

•Any new physics severely constrained by precision measurements

•Fit assumes M_h=150 GeV

•LEP EWWG 2003

Who needs a Higgs?

Precision EW Measurements:

$$M_h < 211 \text{ GeV}$$

- NuTeV questions don't change Higgs conclusions
- See talk by B. Claire

The Tevatron will point the way....

•Increasing M_t by 5 GeV increases upper bound on M_h by 35 GeV!

D0 preliminary: M_t=180.1±3.6±4.0 GeV

Why are we so sure this isn't the whole story?

Why not just have a Standard Model Higgs with M_h<200 GeV?

- Boring!
- Leaves many questions unanswered
 - Origin of fermion mass
 - Higgs mechanism accommodates fermion masses, but doesn't explain them
 - What about CP?
 - No gauge unification
 -

Light Scalars are unnatural

• Higgs mass grows with cut-off, Λ

$$\delta M_h^2 = \frac{G_F}{4\sqrt{2}\pi^2} \Lambda^2 \left(6M_W^2 + 3M_Z^2 + M_h^2 - 12M_t^2 \right)$$
$$= -\left(\frac{\Lambda}{0.7 \text{ TeV}} 200 \text{ GeV} \right)^2$$

 $M_{\rm H} \le 200 \; GeV \; requires \; large \; cancellations$

Solutions:

- Remove Higgs completely
 - Dynamical symmetry breaking
 - Higgsless models in extra D
- Lower cut-off scale
 - Large extra dimensions
- Force cancellations
 - SUSY
 - Little Higgs
 - Make Higgs component of gauge field in extra D

Symmetries maintain cancellations at higher order!

Ultimate answer will come from data!

Which way to go?

Why the TeV Scale? We expect new physics on very general grounds

Either a light Higgs, or strong WW Scattering

Kolda & Murayama, hep-ph/0003170

Standard Model inconsistent without Higgs unless new physics around 1.3 TeV

SUSY....Our favorite model*

- Quadratic divergences cancelled automatically if SUSY particles at TeV scale
- Cancellation result of *supersymmetry*, so happens at every order

$$\delta M_h^2 \approx (\dots) G_F \Lambda^2 (M_t^2 - M_{\tilde{t}}^2)$$

* Spires: 7421 papers after 1990 with title supersymmetry or supersymmetric!

MSSM requires light Higgs

- Tension: stop should be TeV scale to cancel quadratic divergences in M_H from top loops
- Stop needs to be **heavy** so that lightest Higgs mass satisfies LEP bound,

M_H>114 GeV

• Reasonable to consider expanding model by adding Higgs triplets and singlets

$$M_{H}^{2} \leq M_{Z}^{2} \cos^{2} 2\beta + \frac{3G_{F}}{\sqrt{2}\pi^{2}} \ln \left[\frac{\tilde{m}_{t}^{2}}{m_{t}^{2}}\right] + \dots$$

Degrassi,Heinemeyer, Holliuk, Slavich, Weiglein, hep-ph/0212020

Add Scalars to MSSM

- Add Higgs singlet S, triplets $T_0, T_{\pm 1}$
- Superpotential, $W = \lambda_1 H_u H_d S + \lambda_2 H_u T_0 H_d$

 $+\chi_1H_uT_1H_u+\chi_2H_dT_{-1}H_d$

• At tree level, lightest Higgs mass bound becomes,

$$M_{H}^{2} \leq M_{Z}^{2} \cos^{2} 2\beta + v^{2} (\lambda_{1}^{2} + \frac{\lambda_{2}^{2}}{2}) \sin^{2} 2\beta$$
$$+ 4v^{2} (\chi_{1}^{2} \cos^{4} \beta + \chi_{2}^{2} \sin^{4} \beta)$$

- Higgs mass bound depends on particle content
 - − Assume couplings perturbative to M_{GUT} and SUSY scale ≈1 Tev

 $M_h < 150 - 200$ GeV with singlet and triplet Higgs

• Singlets and triplets can be consistent with precision measurements Espinosa & Quiros, hep-ph/9809269,Kobe & Wells, 2002

Beyond the MSSM (NMSSM)

Add singlet Higgs (doesn't spoil gauge unification)

- $W_{s} = \lambda S H_{1} H_{2} + \frac{\kappa}{3} S^{3}$ S³ term necessary to avoid PQ axion
- $\lambda < S >$ gives μ term of MSSM
 - W= μ H_uH_d in MSSM
 - Why is μ weak scale?
- Higgs phenomenology very different than MSSM:
 - 3 Neutral Higgs, 2 pseudoscalar Higgs
- Many scenarios have h⁰, A at EW scale

Miller, Nevzorov, Zerwas, hep-ph/0304049

•See talk by D. Miller

MSSM, $h \rightarrow AA$ excluded Experimentally

- h→AA important discovery channel in NMSSM
- h can be SM-like and A light in NMSSM
- Look for
 - $\quad W^{\scriptscriptstyle +}W^{\scriptscriptstyle \! -} \! \! \rightarrow \! h \! \rightarrow \! AA \rightarrow \tau^{\scriptscriptstyle +} \tau^{\scriptscriptstyle -} jj$
 - Statistically significant at LHC with 300 fb⁻¹/detector

Curves are different models

•Look for enhancement at/ low mass

•Not Gold-Plated!

Ellwanger, Gunion, Hugonie, Moretti, hep-ph/0305109

CP Violation in MSSM

- mSUGRA type models $[m_0, m_{1/2}, A_0, \tan \beta, \operatorname{sign}(\mu)]$ can have *phases in* $m_{1/2}, A_0$
- Phases change Higgs mass spectrum, couplings
 - Could suppress hZZ coupling
 - Light Higgs ($M_h \approx 60$ GeV) could have escaped LEP detection
- New signatures

$$p\overline{p} \rightarrow H^{\pm}h^{0}$$

 $\sigma_{Tevatron} \approx 100 \ fb$

- Can arrange large branching ratio $H^{\pm} \rightarrow h^0 W^{\pm}$

Computational Progress: CPSUPERH has MSSM masses with CP violation. (hep-ph/0307377)

•See talk by S. Mrenna

Little Higgs Models

New particles at scale f ~ Λ cancel SM quadratic divergences

Cancellation from same spin particles

Need symmetry to enforce cancellation

- Heavy W_H,Z_H,A_H cancel gauge loops
- Scalar triplet cancels Higgs loop
- Vector-like charge 2/3 quark cancels top loop

•Arkani-Hamed, Cohen, Katz, Nelson, hep-ph/0206021

More on little Higgs

- Global Symmetry, G (SU(5))
 - •Broken to subgroup H (SO(5))
- Higgs is Goldstone Boson of broken symmetry

•Effective theory below symmetry breaking scale

- Gauged subgroups of G $([SU(2)xU(1)]^2)$ contain SM
- Higgs gets mass at 2 loops (naturally light)

•Freedom to arrange couplings of 1st 2 generations of fermions (their quadratic divergences small)

Heavy W's, Z's, γ's
Heavy top
Extended Higgs sector

• Mixing of heavy-light gauge bosons leads to problems with precision measurements

$$\frac{\delta \Gamma_Z}{\Gamma_Z} \approx 1 + (\dots) \frac{v^2}{f^2}$$
$$\frac{\delta M_W^2}{M_W^2} \approx 1 + (\dots) \frac{v^2}{f^2}$$

- Many models
- Typically, $f \ge 3 4 TeV$

•See talk by G. Kribs

New Phenomenology in Little Higgs Models

- Drell-Yan production of Z_H
 - EW precision limits prefer
 cot θ≈.2 (Heavy-light gauge mixing parameter)
 - BRs very different from SM
- Look for heavy tops
- Look for non-SM 3 gauge boson vertices

Higgs production & decay in Little Higgs Models

- Later....could see same type of effect in radion models
 - How to tell the difference?
- •

•Growing realization that EWSB isn't just Higgs discovery, but requires finding spectrum of new particles!

Han, Logan, McElrath, Wang, hep-ph/0302188

Look for Higgs Triplets

- Present in little Higgs models
 - Easy to add to SUSY models
 - Left-Right models
- Triplet VEVs contribute to ρ parameter
 - Model with one real Higgs triplet: $\delta \rho \approx 4v'^2/v^2$
- Complex triplets give H^{++ (}unique signal for triplets)
 - Lots of new signals
 - Z*→H++H⁻⁻

D0 limit: $M(H^{++}) > 116 \text{ GeV}$

• $W^-W^- \rightarrow H^{---}$

•See talk by M.-C. Chen

Can We Evade Higgs mass Bounds?

• Higgs self-coupling scales with energy

$$L_{SM} \approx -\frac{M_h^2}{2}h^2 - \lambda v h^3 - \frac{\lambda}{4}h^4$$

• $\lambda \rightarrow \infty$ at scale Λ

- Heavier the Higgs ($\lambda = M_{\rm H}^2/2v^2$)
 - The smaller the scale Λ
- Relatively low scale of new physics

Consider SM as effective theory

Higgs can be heavy with new physics

- Non-zero ΔS and/or ΔT required for heavy Higgs
- $M_h \approx 450\text{-}500 \text{ GeV}$ allowed with large ΔT
- Include all operators allowed by symmetries to construct effective theory

•Chivukula, Holbling, hep-ph/0110214

Hard to construct explicit models

- Models are complicated
- Tend to have replicated weak gauge structure
 - SU(2) x SU(2)
 - non-commuting extended TC
 - topflavor
 - ununified SM
 - U(1) x U(1)
 - topcolor-assisted TC
 - topflavor-seesaw
- General analysis of limits from precision measurements
 - Fermion charge assignments have major effect

None of these models give better fits to EW precision data than SM 95% cl bound on new physics scale

-Topcolor, NCETC, UUM

new physics scale bounded≈ 10 TeV....Extra gauge bosons too heavy to be observed at LHC

-Topflavor bounds \approx few TeV

Chivukula, He, Howard, Simmons, hep-ph/0307209

Solving naturalness problem with low scale extra dimensions

Flat:

$$M_{Pl} \approx R^{\delta/2} M_D^{1+\delta/2} \qquad D = 4 + \delta$$

Warped:

$$M_{Pl} \approx M_5 e^{-KR\pi}$$

Where does Higgs live? On the brane? In the bulk?

Maybe electroweak symmetry breaking through boundary conditions on the brane?

Can Higgs be 5th component of gauge field in 5D?

See talk by B. Dobrescu

Models with Extra Dimensions provide another good comparison point for SM

- Extra-D Models have towers of new Kaluza Klein Gravitons
- Graviton emission can measure the number of hidden dimensions
- Graviton exchange affects precision measurements,
 Drell-Yan production, missing E_T measurements....

Once we find something, we want to know what it is....

Is it a Higgs or is it a radion?

- Warped extra D has radion: ϕ
- φ couples like Higgs, but with strength φ/TeV instead of h/v
- Higgs- ϕ mixing suppresses standard channel, gg \rightarrow h $\rightarrow\gamma\gamma$
- How do you know it's a radion?

Have to find both Higgs & radion

Higgs-Radion Mixing Parameter

Battaglia, DeCurtis, DeRoeck, Dominici,& Gunion, hep-ph/030425

Dominici, Grzadkowski, Gunion, Toharia, hep-ph/0206192

Hewett & Spiropulu, hep-ph/0205100

If we find a "Higgs-like" object, what then?

- We need to:
 - Measure Higgs couplings to fermions & gauge bosons
 - Measure Higgs spin/parity
 - Reconstruct Higgs potential
- Reminder: Many models have other signatures:
 - New gauge bosons (little Higgs)
 - Other new resonances (Extra D)
 - Scalar triplets (little Higgs, NMSSM)
 - Colored scalars (MSSM)
 - etc

Coupling Constant Measurements

LHC measures σ BR for Higgs production and decay

•Individual measurements depend on combinations of coupling constants

- •Do global fit to relative couplings
- •How well do we need to do?

Duehrssen

How well do we need Higgs couplings?

Guasch, Hollik, Penaranda, hep-ph/0307012

Absolute measurements of Higgs couplings

Duhrssen, ATL-PHYS-2003-030

 e^+e^-LC at $\sqrt{s}=350$ GeV L=500 fb⁻¹, M_H=120 GeV

Battaglia, Desch, hep-ph/0101165

Can we reconstruct the Higgs potential?

$$V = \frac{M_{h}^{2}}{2}h^{2} + \lambda_{3}vh^{3} + \frac{\lambda_{4}}{4}h^{4}$$

+ $\sum_{n} C_{n} \frac{(h^{2} - v^{2})^{n}}{\Lambda^{(2n-4)}}$
SM : $\lambda_{3} = \lambda_{4} = \frac{M_{h}^{2}}{2v^{2}}$

Fundamental test of model!

See talks by A. deRoeck and S. Martin

>¢1

V// 2

Higgs self-couplings require careful interpretation

•Little Higgs models

generate effective Higgs

potential from integrating

 MSSM, corrections to λ₃,λ₄ largely absorbed in definition of Higgs mass

Reconstructing the Higgs potential

300 fb⁻¹ for

 $150 < M_h < 200 \text{ GeV}$

Н

Baur, Plehn & Rainwater, hep-ph/0304015

Tri-Linear Higgs Coupling at e+e- Colliders

• $M_h < 140 \text{ Gev}, e^+e^- \rightarrow Zhh$

- Dominant decay, h→bb
- High efficiency for identifying b's recoiling from Z
- $M_h=120 \text{ GeV}, \sqrt{s}=500 \text{ GeV},$ L=1 ab⁻¹
- $M_h > 150 \text{ GeV}, h \rightarrow W^+W^-$
 - Phase space suppression
 - σ (Zhh) decreases at higher \sqrt{s} ; sensitivity to λ decreases
 - $-\sigma(vvhh) \ll \sigma(Zhh)$
 - $-\sqrt{s}=500$ GeV optimal energy

LHC & LC are complementary: LHC sensitive to $M_h > 150$ GeV, LC sensitive to lighter M_h

Castanier, hep-ex/0101028

Baur, Plehn, Rainwater, hep-ph/0304015

Look for dimension-6 Higgs Interactions

•Model independent approach

$$L = \sum \frac{f_i}{\Lambda^2} O_i$$
$$O_1 = \frac{1}{2} (\partial_\mu \Phi^+ \Phi) \partial^\mu (\Phi^+ \Phi)$$
$$O_2 = -\frac{1}{2} (\Phi^+ \Phi)^3$$

•Lose connection between M_h and λ_3 with dimension-6 operators

$$M_{h}^{2} = 2\lambda_{3}v^{2}\left(1 + O\left(\frac{fv^{2}}{\Lambda^{2}}\right)\right)$$

Is there a model?

Barger et al, hep-ph/0301097

What about Quartic Higgs Coupling

- Requires 3 Higgs production
 - 10 TeV, $e+e^{-1}$ collider has 5 $e^{+}e^{-1}$ \rightarrow hhhvv events with L= 1 ab^{-1}
 - Maybe resonant enhancement in gg →hhh in MSSM?
 - Unfortunately, no sensitivity to quartic coupling

•Cynolter, Lendvai, Pocsik, hep-ph/0003008

New Physics Searches require *Precision Calculations*

- Is it new physics? – Extra dimensions
 - Little Higgs
 - SUSY
 - Something really new.....
- Or is it QCD?

$(g-2)_{\mu}$ example of need for higher order corrections

BNL g-2 experiment latest result from 2000 μ^+ data released 2002

$a_{\mu} = 11659203(8) \times 10^{-10}$

Soon result of 2001 μ data expected \Rightarrow 30% error reduction

Excellent place for new physics \Rightarrow unexplored loop effects ~ m_{μ}^2/Λ^2

Supersymmetry is natural candidate at moderate/large $tan\beta$

$$a_{\mu}^{\text{had,LO}}$$
 from data via dispersion integral
 $a_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} \sigma_{\text{had}}^0(s) K(s) \mathrm{d}s$

Recent data included CMD-2, SND, BES 2-5 GeV, ALEPH τ . NEW: CMD-2 prelim update

Dominated by low energy region, p resonance

•Slide from P. Gambini

New data for hadronic contribution

Final CMD-2 $\pi \pi$ data (2002) 0.6% syst error!

Hagiwara et al (HMNT) NEW result: $a_{\mu}^{had,LO} = 691.7 \pm 5.8_{exp} \pm 2.0_{r.c.}$

This translates to a $\sim 2-2.5\sigma$ discrepancy

Using τ data below 1.8 GeV Davier at al (DEHZ) $a_{\mu}^{had,LO}=709.0\pm5.1_{exp}\pm1.2_{r.c}\pm2.8_{SU(2)}$

Good agreement between Aleph, CLEO, Opal τ data

My Editorial Comment: Still can't make case for new physics!

•Slide from P. Gambini

Progress in Theoretical Predictions

 NNLO results for inclusive Higgs production, pp→h

Harlander & Kilgore, hep-ph/0201206, Anastasiou, Melnikov, hep-ph/0207004

Note reduced scale dependence at NNLO

\rightarrow Large corrections

Higgs Distributions at NLO

Higgs p_T spectrum at NLO QCD:

NLO corrections to shape small, 5% at y=0

Suggests using LO Monte Carlo, weighted by NNLO cross section

Need case by case study

Anastasiou, Dixon, &Melnikov, hep-ph/0211141 Glosser & Schmidt, hep-ph/0209248 Ravindran, Smith, & van Neervan, hep-ph/021114 deFlorian, Grazzini, & Kunszt, hep-ph/9902483

Large M_t limit and QCD corrections

• NLO, NNLO use effective theory:

 $L = -\frac{h}{v} C_1(\alpha_s) G_{\mu\nu}{}^a G^{a\mu\nu}$

Η

Does effective theory work for SUSY?

•Use effective theory only for small $tan\beta$ where b loop is suppressed

•Include stop, gluino loops

•No decoupling for heavy gluino with SUSY couplings maintained

•SUSY effects tend to suppress rate

Harlander and Steinhauser, hep-ph/0307346

Tremendous progress in automated programs

GRACE collaboration: Automated system for 1-loop electroweak processes

- General non-linear gauge: check gauge independence
 - Also check ultraviolet and infrared finiteness
- $2 \rightarrow 2$ processes at one loop EW:
 - $e^+e^- \rightarrow \nu\nu, e^+e^-, W^+W^-, ZZ, hZ$
 - tb \rightarrow W⁺ γ ,W⁺Z, W⁺h,....
 - etc
- Uses finite photon mass
 - Not easily generalized to QCD
- Start on automating $2 \rightarrow 3$ 1-loop EW
 - e+e- \rightarrow tth
 - e+e- \rightarrow vvh
 - e+e- \rightarrow Zhh
- Many new multi-loop calculations....
 - Review by Dittmaier, hep-ph/0308070

GRACE collaboration, Belanger et al, hep-ph/0308080

NNLO QCD and NLO EW Corrections to Wh and Zh production

- Two loop $O(\alpha_s^2)$ corrections to Wh and Zh production at Tevatron and LHC
- Increase rate 5-10%
- Theoretically very clean
 - Almost no scale dependence at NNLO

 $p\overline{p} \rightarrow Wh \ at \ Tevatron$

- •Complete EW corrections
- •Decrease rate
- •Opposite sign from QCD !

Ciccolini, Dittmaier, Kramer, hep-ph/0306234

NLO QCD &EW Corrections to tth Production

QCD correction to tth production large at LHC

•Dawson, Jackson, Orr, Reina, Wackeroth, hepph/0305087

•Beenakker et al, hep-ph/0211352

Cancellation of QCD & EW corrections at high \sqrt{s}

bb→h in MSSM

Only relevant in SUSY with large tan β

When is the b quark a parton????

Leads to new signatures with single b's: gb→bh Reduced theoretical error from reduced μ dependence

NNLO: Harlander & Kilgore, hep-ph/0304035

What is the dominant process?

b densities enhanced: $b(x) \approx \alpha_s \ln(Q^2/m_b^2) g(x)$

Exclusive cross section for $p\overline{p} \rightarrow b\overline{b}h$

• Use high p_T b-quarks to suppress background: need NLO $q\overline{q}, gg \rightarrow b\overline{b}h$

Dittmaier, Kramer, Spira, hep-ph/0309204

S. Dawson, C. Jackson, L. Reina, D. Wackeroth

Tevatron Check Sheet: Tevatron can probe EWSB!

- Measure M_t:
 - 5 GeV in M_t is 35 GeV in Higgs limit
- Measure M_W:
 - Precision measurements are critical constraint on models of new physics
- Measure Drell-Yan:
 - Probes heavy Z of Little Higgs, Extra-D
- Search for Non-SM Higgs (You don't know they're not there until you look!)
 - CP violating MSSM, NMSSM, triplets, 2HDM...
- Search for new particles:
 - Models of new physics have lots of new particles
- Workshop Goal: FILL IN MORE ENTRIES!

•It's not just the Higgs!

Conclusions

- Explosion of new models
 - Models strongly impacted by precision measurements
- Think outside the box....
 - Look for Higgs triplets, singlets, new gauge bosons, heavy fermions....
- Calculational progress vital to distinguish new physics from radiative corrections

