Neutrino Astrophysics:

Theore’rncal S‘rg’rus and Expemmem‘al Outlook

8

._I. :*‘5* -'1.- - .;.__..' o

John Beacom‘ .

Theor'e’rucal As’rrophysncs Gr'oup Fermilab -

bhysics Gr‘ou Fer'mllab Weak Interactions and Neutrinos Workshop Lake Geneva October 2003



Introductory Remarks
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Past Frontiers

»+ Bethe and Peierls, Nature (1934)

“If [there are no new forces] ----

one can conclude that there is no practically
possible way of observing the neutrino.”

- 10 years ago

Solar neutrino problem

Atmospheric neutrino problem

Large neutrino masses

Nonzero magnetic moments, decay, etc.
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Lucky Neutrinos
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State of the Field

“There is nothing new to be discovered in physics now,
All that remains is more and more precise measurement.”’

-- Kelvin, c. 1900

*We now understand neutrinos
(Yeah, right)

*We now understand cosmology oF
(Yeah, right)

*We now understand high-energy astrophysics
(Yeah, right)
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Neutrino Mixing
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Neutrino Masses
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Neutrino Number Densities

QBh

0.005 0.01 0.02 0.03

Pv = vanv

N, <4 (99%CL) BBN
Abazajian, Astropart. 19, 303 (2003)

15<N, <7.2 WMAP++

Crotty, Lesgourgues, and Pastor,
PRD 67, 123005 (2003)

Number relative to H

n, =ny

Dolgov et al., NPB 632, 363 (2002);
Wong, PRD 66, 025015 (2002);

Abazajian, Beacom, and Bell,
PRD 66, 013008 (2002)
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Neutrino Dark Matter

pma‘r‘rer' — pCDM

TP baryons

+ pneuTrinos

p\/:m\/n\/

Future discovery range:
Abazajian & Dodelson,
PRL 91, 041301 (2003)

L Kaplinghat, Knox & Song,
107°  0.01 0.1 astro-ph/0303344
k (h/Mpc)

(graphic from Kev Abazajian) See AbClZClJiCln pClI"G”eI talk
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Photon Windows
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Neutrino Windows

Reactors, Aceelerators
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Neutrino Facilities Assessment Committee, NAS (2002)
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Astrophysical Neutrinos:
Searching High
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High Energy Messengers

Fluxes of Cosmic Rays
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Beyond the Vel

vy=domain

Galactic Center
Mrkb501
star formation peaks

b
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Learned and Mannheim, Ann.Rev.Nucl.Part.Sci 50, 679 (2000)
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Active Galaxies
Core of Galaxy NGC 426l

Hubble Space Telescope
Wide Field / Planetary Camera

Ground-Based Optical/Radio Image HST Image of a Gas and Dust Disk

380 Arc Seconds - 17 Arc Seconds -
88,000 LIGHTYEARS 400 LIGHTYEARS
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UHE Neutrinos

NEUTRINO BEAMS: HEAVEN & EARTH

initial fluxes are
Py, :(PVH :(PVT =1:2:0

after oscillations
Pv, :(Pv“ :(PvT =1:1:1

i 'L|i|'.t'ft..‘[il.!nl-.1] o
~ Earth opacity effects

magnetic 1'
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ICECUBE

Skiway
AMANDA (for plan\es!)
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IceCube Sensitivity
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J. Ahrens et al. (IceCube), astro-ph/0305196
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Neutrino-Gamma Connection
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Neutrino Decay

Normal Inverted
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Possible direct measurement of CP phase 6 too!

Beacom, Bell, Hooper, Pakvasa, Weiler, PRL 90, 181301 (2003);
Beacom, Bell, Hooper, Pakvasa, Weiler, hep-ph/0309267
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Nonstandard Flavor Ratios

Flavor ratios can also deviate from 1:1:1 due to:

* Tiny-8m?2 mixing to steriles
Crocker, Melia, Volkas, ApJS 130, 339 (2000); 141, 147 (2002);
Berezinsky, Narayan, Vissani, NPB 658, 254 (2003);
Keranen, Maalampi, Myyrylainen, Riittinen, hep-ph/0307041;
Beacom, Bell, Hooper, Learned, Pakvasa, Weiler, hep-ph/0307151

*CPT violation
Barenboim, Quigg, PRD 67, 073024 (2003)

‘For these and astrophysical reasons, it is very

important to test the flavor ratios directly!
Barenboim, Quigg, PRD 67, 073024 (2003);

Beacom, Bell, Hooper, Pakvasa, Weiler, hep-ph/0307025;
Jones, Mocioiu, Reno, Sarcevic, hep-ph/0308042

See Bell parallel talk
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Astrophysical Neutrinos:
Searching Very High




UHE Neutrino Prospects

Rice Agasa

Amanda

e H_

Importance
of neutrino
mixing

g

log (E° (E)GeV cm™

log (E/GeV)
Spiering, J. Phys. 629, 843 (2003)

See Besson parallel talk
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GZK Neutrinos
pCR+yCMB—>A—>p+7tO n° — vy
—>n+7 T UV,
Connected observables:
‘Protons
‘Photons
‘Neutrinos

10° 103

-Pmpag ation Distance (Mpc) C ron i N
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Protons, Photons, and Neutrinos

(E)E?[eVem™© s sr]

Semikoz, Sigl, hep-ph/0309328
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Existing Neutrino Limits
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Semikoz, Sigl, hep-ph/0309328
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Future Neutrino Sensitivity
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Semikoz, Sigl, hep-ph/0309328
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ANITA
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Other Physics

*Neutrino-nucleon cross section at high energies
Domokos, Kovesi-Domokos, Burgett, Wrinkle, JHEP 0107, 017 (2001);
Tyler, Olinto, Sigl, PRD 63, 055001 (2001);

Jain, Kar, McKay, Panda, Ralston, PRD 66, 065018 (2002);
Anchordoqui, Feng, Goldberg, Shapere, PRD 66, 103002 (2002);
Friess, Han, Hooper, PLB 547, 31 (2002)

*Z-bursts, supermassive dark matter, top-down

Gorbunov, Tinyakov, Troitsky, Astropart. Phys. 18, 463 (2003);
Jones, Mocioiu, Reno, Sarcevic, hep-ph/0308042;
Fodor, Katz, Ringwald, Tu, hep-ph/0309171

‘New astrophysical sources

‘New tests of neutrino properties

bhysics Group, Fermilab Weak Interactions and Neutrinos Workshop Lake Geneva October 2003



Astrophysical Neutrinos:
Searching Very Low




Supernovae

SN Rates
SN Detection

Modeling (1d, 2d, 3d)

SN1999dk, z = 0.015
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Supernova Energetics

2
A, = ¢ x. 5R ™ ~ 3x10% ergs = 2 x10% MeV

core

K.E. of explosion =107* AE,
E.M. radiation =107 AE,
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Supernova Neutrino Emission

{Jru't.o newtron star

newtyings Fh ere

CE,> = [ MeV
{ E17€> ~ |6 MeV

& E“Vx> ~ 25 MgV :

LUEL'H = LF{.’&} = Ll«’,{[t} duration = (05
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Supernova Neutrino Detection

SNI987A:
~20 v,p — e’n events

SN2007??:
~10* CC events
~10° NC events

Supernova physics (models, black holes, progenitors...)

Particle physics (neutrino properties, new particles, ...)
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Waiting Is Boring

"Everybody complains about the supernova
rate, but nobody does anything about it."
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Supernova Neutrino Background
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Fig. 3. Number flux of #.'s for the three supernova rate models, assuming

Ando, Sato, and Totani, Astropart. Phys. 18, 307 (2003)
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Relative Spectra

Solar °B

&

. Solar hep
&
' Atmospheric ve

PR /
fSRN

pletlldmnx

.10 2[1 30 40 50 EU ?U BD 90 100
Neutrino Energy (MeV) (M. Malek)

=
n:u
=
o
@
o
Q
=
)
3
e
@
o
E
?
o
Ly
e
@
o
>
=
o
o
=
£
2

John Beacom, Theoretical Astrophysics Group, Fermilab Weak Interactions and Neutrinos Workshop Lake Geneva October 2003



SK Data Limit

‘4.1 years of SK data
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*Background limited

-Some improvement
is possible
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SNB Flux Limit

‘Predictions roughly agree on spectrum shape

*Main question is normalization of

v, /em@ /s, E, >19.3 MeV
2.2 Kaplinghat, Steigman, Walker, PRD 62, 043001 (2000)

<1.2 Malek et al. (SK), PRL 90, 061101 (2003)

0.4 Fukugita and Kawasaki, MNRAS 340, L7 (2003)
0.4 Ando, Sato, and Totani, Astropart. Phys. 18, 307 (2003)

‘Last two based on multiwavelength measurements
of the star formation rate as a function of redshift

bhysics Group, Fermilab Weak Interactions and Neutrinos Workshop Lake Geneva October 2003



Inverse Beta Decay

V,+p—>e" +n

*Cross section is “large” and "spectral”
6= 0.095(E, ~1.3MeV)? 10~ cm?
E =E -13MeV
e v
Corrections in Vogel and Beacom, PRD 60, 053003 (1999)

‘We must detect the neutron, but how?
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A Proposed Solution
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Add Gadolinium to SK?

0,000 ton Warter Cherenkov Detector

Gadolinium
Antineutrino
Detector
Zealously
Outperforming
Old
Kamiokande,
Super!

onics hut

Lake Geneva October 2003



Neutron Capture

Capture on H: sigma = 0.3 barns
Egamma = 2.2 MeV

Capture on Gd: sigma = 49100 barns
Eoomma = 8 MeV
(Eflquivalen‘r E. ~5 MeV)

= o T MO T egOq
tota  MH o Med

Capture fraction = 90%
A=4cm, =20 pus
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Cost of Gd

Based on 100 tons of 6dCl; in SK (0.2% by mass)

1984: $4,000/kg $400,000,000/5sK

1993:  $485/kg $48,500,000/SK

1999:  $115/kg $11,500,000/SK

2002: $4/kg $400,000/5K
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Important GdCI; Properties

» So/lub/e in water (unlike mineral oil)

*Initial chemical and radiological purity excellent
‘Initial water transparency tests excellent

100 tons? No problem

*Gadolinium used in MRI
confrasting agents

*You could drink 12 liters of
GADZOOKS! water every day




Gadolinium Supplements

Try "gadolinium health buy” in Google

1.25 ng/liter Gadolinium
| "Supports healthy cellular functions”

“Not carcinogenic”

Note: sea water is 0.7 ng/liter Gadolinium

But it doesn't come in raspberry flavor
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Neutron Backgrounds in SK

Don't want captures on Gd
to dilute the solar signal

Solarv+e —>v+e

How many neutrons are in
SK anyway?

) B&ckgrouﬂ&é
»Spallation ~ 10°/day | ~100/ day

but can be easily cut 080

*‘Reactor ~ 20/day (more likely a signal')

-152Gd decay 10%0 alpha/day, P(alpha,n) on 170 is 10-1

*U/Th contamination in GdCl; must be controlled
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Correlated Backgrounds

-Singles event rate above 5 MeV is ~ 1/ton/year
so accidental background rate is vanishing

8He/Li/!lLi produced by spallation
Beta decay followed by neutron emission
Rare, controlled by timing and energy cuts

-Reactor v, +p > e +n

-Atmospheric v, +p > e’ +n

_|_
invisible

-Atmospheric v, +p, .4 = U +n,., +invisible
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Spectrum With GADZOOKS!
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Beacom and Vagins, hep-ph/0309300
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Reactor Antineutrinos

— reactor neutrinos
oe0 neutrinos

. = g KamLAND first data
0.16 kton yr

@ KamLAND data

e Just 3 days in
wwelo SK GADZOOKS!

-:m:d}'sis threshold

-

o
=
L
el
=
z

=
8a

"High" energies only,
less resolution




Galactic Supernova Detection
= 8000 Ve+p—>e++n
=700 v+*O->v+y+X (E=5-10MeV)

~300 v+e —>v+e (e is forward)
~100 v, +*0—>e +X (buried)

v, +°0 5> e +X
With GADZOOKS!, we can separate reactions

Real chance to see CC reactions on 160
Haxton, PRD 36, 2283 (1987)
Oscillations can increase those yields by ~ 10
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Atm. Neutrinos and Proton Decay

*Atmospheric neutrino charged-current interactions
Vf T pbound(léo) — 0" + nfree + X
VE T nbound(léo) —> L+ pfr‘ee T X

Flux ratio predictions
Matter effects in oscillations
CPT violation (Barenboim, Lykken, et al.) tests

‘Nucleon decay
v, vp, yn from O and ®N

following N — Kv
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Conclusions

*6ADZOOKS!
Propose to add 0.2% GdCl; to Super-Kamiokande
(Beacom and Vagins, paper in preparation)

‘Potentially quick and inexpensive

* Detect the Supernova Neutrino Background (SNB)
Astrophysical neutrinos from redshift z ~ 0.5
Unique probe of the dark supernova rate
Measurement of supernova neutrino spectrum
New tests of neutrino properties

‘New results on reactor, solar, atmospheric, and
nucleon decay
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Conclusions

Neutrinos are central to many important questions:
- Beyond the Standard Model

What chooses the neutrino masses and mixing angles?

Are neutrinos Majorana or Dirac particles?
Tests for exotic neutrino properties

»  Cosmology
Cosmological parameter determination
Dark matter properties
Dark energy? Lambda ~ (1 meV)* ~ m*?

* High-energy astrophysics
Conventional sources at highest energies, densities, and distances
Unconventional sources, e.g., dark matter decay or annihilation
Origins of the high-energy gamma and proton fluxes

And best of all..there's data aplenty!

bhysics Group, Fermilab Weak Interactions and Neutrinos Workshop Lake Geneva October 2003



Conclusions

Not the beginning of the end in neutrino physics,
but just the end of the beginning.

Neutrino astrophysics, lots of data just ahead,
On three frontiers:

1-1074 TeV: AGN, GRB, etc in IceCube, others
1076 TeV: GZK, Z-burst, SDM, etc

10”-6 TeV: supernova in GADZOOKS!

Neutrino telescopes approaching comparable
sensitivity to photon observations.

Also key for testing dark matter models.
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Lutefisk

Codfish soaked in Iye (HNaO, see Material Safety Data Sheet)

i
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