Weak decays, CP violation and CKM:

Theoretical Status

João P. Silva

ISEL and CFIF - Lisbon

J.P. Silva Weak Decays, CP Violation and CKM WIN03 p.1

Apologies

• I have chosen only a few subjects

• I quote only a few references

(so many articles... so little time...)

• $(\alpha,\beta,\gamma) = (\phi_2,\phi_1,\phi_3)$

Outline

1 – CKM, unitarity triangle and all that

2 – Provocations

3 – Some current issues

4 – Conclusions

1 – CKM, Unitarity triangle and all that

- Theory, Phenomenology and Experiment hadronic "messy" elements
- The (ρ, η) plane

the goal: detect or constrain New Physics

• The unitary triangle

gives only one of many tests

Generic analysis

LP. Silva Weak Decays, CP Violation and CKM

WIN03

Fhe big problem: hadronic "messy" elements

u, d, s, c, b, t, ...

Operator rephasing:
$$\hat{\psi}
ightarrow e^{i arphi_{quark}} \hat{\psi}$$

CPV observables: phenomenology

 $| B^0 > \rightarrow e^{i \alpha} | B^0 > freedom$

==> CPV observables require clash of two phases

1. Clash mixing M_{12} with Γ_{12} : |q/p|-1CPV in mixing Measured in kaon system through ε_{K}

 Clash two direct decay paths: |Ā/A|-1 CPV in decay Measured in kaon system through ε'_K

WIN03

I.P. Silva Weak Decays, CP Violation and CKM

3. Clash direct path with mixing path; first mix, then decay

 $λ_f = q_B/p_B \ \overline{A}_f/A_f$ Measured in B_d system through sin 2β

p.8

3. Clash direct path with mixing path; first mix, then decay

 $λ_f = q_B/p_B \ \overline{A}_f/A_f$ Measured in B_d system through sin 2β

4. Clash direct path with mixing path; first decay, then mix

 $\xi_i = \mathbf{A}_{i \to D} / \mathbf{A}_{i \to \overline{D}} \ \mathbf{p}_D / \mathbf{q}_D$

Never measured; <u>but</u> can affect measurements of γ in B \rightarrow D

$$0.1 \sim A_{i \rightarrow D} \quad D^{0} \text{ K}^{+} \quad \cdots \quad D^{0} \text{ K}^{+} \quad \cdots \quad (X^{-}\ell^{+}\nu_{\ell})_{D} \text{ K}^{+}$$

$$B^{+} \quad P_{D}/q_{D}$$

$$A_{i \rightarrow \overline{D}} \quad \overline{D^{0}} \text{ K}^{+} \quad \cdots \quad A_{morim}, \text{ Santos \& Silva PRD 59, 056001 (1999)}$$

In the SM $|q/p|^2 - 1 \sim 10^{-3}$

The other CPV observables are measured in

$$\Gamma[B^{0}(t) \rightarrow f] \sim e^{-\Gamma t} [1 + C_{f} \cos(\Delta m t) - S_{f} \sin(\Delta m t)]$$

$$\Gamma[\overline{B^{0}}(t) \rightarrow f] \sim e^{-\Gamma t} [1 - C_{f} \cos(\Delta m t) + S_{f} \sin(\Delta m t)]$$

Direct CPV
$$C_f \equiv \frac{1 - \left|\lambda_f\right|^2}{1 + \left|\lambda_f\right|^2} \xrightarrow{\text{if } \lambda_f \approx e^{-2i\varphi}} 0$$

Interference CPV
$$S_f \equiv \frac{2Im(\lambda_f)}{1+|\lambda_f|^2} \xrightarrow{\text{if } \lambda_f \approx e^{-2i\varphi}} -\sin(2\varphi)$$

LP. Silva Weak Decays, CP Violation and CKM WIN03 p.10

CPV observables: theory

1. Phases can come from $\Delta B=2$ terms phases in the mixing

2. Phases can come from $\Delta B=1$ terms phases in the decay

In the SM all effects arise from a single CPV phase in the charged current interactions

Wolfenstein parametrization of the CKM matrix

$$1 - \lambda^2/2$$
 λ $A \lambda^3 (\rho - i\eta)$ $-\lambda$ $1 - \lambda^2/2$ $A \lambda^2$ $A \lambda^3 (1 - \rho - i\eta)$ $-A \lambda^2$ 1

Wolfenstein PRL51, 1945 (1983)

 $\lambda = 0.2196 \pm 0.0026$ from s \rightarrow u transitions

 $A = 0.85 \pm 0.06 \qquad \qquad \text{from } b \rightarrow c \text{ transitions}$

"All" other experiments probe some combination of ρ and η

J.P. Silva Weak Decays, CP Violation and CKM WIN03 p.12

Our main goal is to detect new physics

Look for a lack of overlap among different constraints in

LP. Silva Weak Decays, CP Violation and CKM WIN03

p.13

Redundant "parametrization" of the CKM matrix

1
$$\lambda e^{i\chi}$$
 $A R_b \lambda^3 e^{-i\gamma}$ $-\lambda$ 1 $A \lambda^2$ $A R_t \lambda^3 e^{-i\beta}$ $-A \lambda^2 e^{i\chi}$ 1

• In the SM

$$\begin{aligned} \mathbf{R}_{t} \ \mathbf{e}^{-\mathbf{i} \ \beta} &\approx \mathbf{1} - \mathbf{\rho} - \mathbf{i} \ \mathbf{\eta} \\ \mathbf{R}_{b} \ \mathbf{e}^{-\mathbf{i} \ \gamma} &\approx \mathbf{\rho} - \mathbf{i} \ \mathbf{\eta} \\ &\chi &\approx \lambda^{2} \ \mathbf{\eta} \\ &\chi' &\approx \mathbf{A}^{2} \ \lambda^{4} \ \mathbf{\eta} \end{aligned}$$

Aleksan, Kayser & London PRL73, 18 (1994)

• Beyond the SM

- there are nine independent magnitudes
- but there are only four independent phases: β, γ, χ, χ' Branco, Lavoura & Silva "CP violation"

J.P. Silva Weak Decays, CP Violation and CKM WIN03 p.14

Mixing in the SM

$$B_{d}^{0} ==> (V_{tb}^{\bullet} V_{td})^{2} = 1 (AR_{t}\lambda^{3}e^{-i\beta})^{2} => q/p = e^{-2i\beta}$$
$$B_{s}^{0} ==> (V_{tb}^{\bullet} V_{ts})^{2} = 1 (-A\lambda^{2}e^{i\chi})^{2} ==> q/p = e^{2i\chi}$$

LP. Silva Weak Decays, CP Violation and CKM WIN03 p.15

 $\mathbf{B} \rightarrow \mathbf{\psi} \mathbf{K}_{\mathbf{S}}$

$$\lambda_{\psi K_{S}} = \frac{q}{p} \frac{A(\overline{B} \to \psi K_{S})}{A(B \to \psi K_{S})} = e^{-2i\beta} \frac{-4i\beta}{4} = -e^{-2i\beta}$$

•
$$S_{\psi Ks} = \sin(2\beta)$$
 at LP'03:

- **Belle 140 fb⁻¹** $0.733 \pm 0.057 \pm 0.028$ •
- BaBar 81 fb⁻¹ $0.741 \pm 0.067 \pm 0.033$
- New World Average (Browder from Höcker): Precision Measurement

 $sin(2\beta) = 0.736 \pm 0.049$

Constraints on the ρ - η plane

http://ckmfitter.in2p3.f Höcker et al. EPJ C21, 225 (2001)

J.P. Silva Weak Decays, CP Violation and CKM WIN03

p.18

Unitarity triangle

1	λ e ^{i χ'}	$A R_b \lambda^3 e^{-i\gamma}$
$-\lambda$	1	$A \lambda^2$
$A \operatorname{R}_{t} \lambda^{3} e^{-i \beta}$	$-A \lambda^2 e^{i\chi}$	1

$$V_{ud}V_{ub}^{\bullet} + V_{cd}V_{cb}^{\bullet} + V_{td}V_{tb}^{\bullet} = 0 \quad ==> \quad \mathbf{R}_{b} e^{+i\gamma} + \mathbf{R}_{t} e^{-i\beta} = 1$$

2 – Provocations

• goal is to uncover NP; not to test the SM

• 4th type of CPV to be measured

- unitary triangle
 - compares mixing versus decay
 - is only one of many tests of the SM picture of CPV

• $\alpha + \beta + \gamma = \pi$ by definition

only two large phases in the CKM: β
 and γ

testing this relation makes exactly the same sense as testing the relation β=β

3 – Some current issues

• Hints from $B \rightarrow \Phi K_S$

• **B** $\rightarrow \pi\pi$ and penguin pollution

• Usefulness of $\mathbf{B} \rightarrow \pi^0 \pi^0$

• Hints from $B \rightarrow K\pi$ decays

"Testing the relation $\beta = \beta$ "

The angle β can be probed in a variety of channels:

- $B_d \rightarrow \Phi K_S$, $B_d \rightarrow \eta' K_S$ and (-) $B_d \rightarrow K^+ K^- K_S$ should yield the same angle β found in $B_d \rightarrow \psi K_S$
- b \rightarrow ccd decays, $B_d \rightarrow \psi \pi^0$ and $B_d \rightarrow D^{(*)+}D^{(*)-}$ (b \rightarrow ccd) $\sim \lambda$ (b \rightarrow ccs) could be more sensitive to b \rightarrow d penguins than (b \rightarrow ccs) is to b \rightarrow s penguins
- $B_d \rightarrow A K_S$, with $A = \chi_1 \eta_c$ comparison with $B_d \rightarrow \psi K_S$ tests models which break P and CP Atwood & Hiller ph/0307251
- $B_d \rightarrow J/\psi K_L$

comparison with $B_d \rightarrow J/\psi K_s$ tests CPT and exotic $B \rightarrow \overline{K}$ decays Lavoura PRD62, 056002 (2000) Grossman et al. PLB538, 327 (2002)

$B \rightarrow \Phi K_S$ is a penguin decay

• Recall

LP. Silva Weak Decays, CP Violation and CKM WIN03

p.24

Simple predictions

- A "prediction" of the SM is Phase β (b \rightarrow s penguin) = Phase β (b \rightarrow cc̄s)
- Since $B_d \to \Phi K_S$ and $B_d \to \eta$ ' K_S are $b \to s$ penguin decays, they are more likely to be affected by NP

• Due to the different hadronic matrix elements, the impact may be different in the two decays

Measurements of $B \rightarrow \Phi K_S$

Obs.	Date	BaBar	Belle	Average
C	previous	$-0.18 \pm 0.51 \pm 0.07$	$-0.73 \pm 0.64 \pm 0.22$	-0.38 ± 0.41
S _{PKs}	LP'03	$+0.45 \pm 0.43 \pm 0.07$	$-0.96 \pm 0.50 \pm 0.10$	-0.14 ± 0.33
C	previous	$-0.80 \pm 0.38 \pm 0.12$	$+0.56 \pm 0.41 \pm 0.16$	-0.19 ± 0.30
	LP'03	$-0.38 \pm 0.37 \pm 0.12$	$+0.15 \pm 0.29 \pm 0.08$	-0.04 ± 0.24

- Table from LP'03 talks, specially Browder, and HFAG
- Compare with $sin(2\beta) = 0.736 \pm 0.049$
- BaBar came closer to $S_{\psi Ks}$
- Belle's disagreement worsened
- Overall same 2.7 σ with $S_{\psi Ks}$ remained

==> Possibility of New Physics

p.26

What would be needed to explain $S_{\Phi Ks} = -0.14$?

• New Physics in $b \rightarrow s$ penguins

• with amplitude comparable to the SM

• and, with a large relative CP phase

One possibility: Non-SM sZb couplings

$$L_{Z}^{\text{new}} = \frac{g^{2}}{4\pi} \frac{g}{2\cos\theta_{W}} \left[\mathbf{Z}_{sb} \overline{b}_{L} \gamma_{\mu} s_{L} + \mathbf{Z}'_{sb} \overline{b}_{R} \gamma_{\mu} s_{R} \right] Z^{\mu} + h.c.$$

~

 Experimental constraint from inclusive B_d → X_s e⁺ e⁻ decays

$$\sqrt{\left|Z_{sb} + Z_{sb}^{SM}\right|^{2} + \left|Z'_{sb}\right|^{2}} \leq 0.08 \quad \text{with} \quad Z_{sb}^{SM} = -V_{tb}^{*}V_{ts}\sin^{2}\theta_{W}C_{10}^{*} \approx -0.04$$

imply that new Z penguins are at most 2-3 larger than SM

• These new vertices also affect BR and A_{FB} in $b \rightarrow s \ell^+ \ell^-$ (~SM), $B_s \rightarrow \mu^+ \mu^-$ (~10 SM), Δm_s (~0.5 SM), while $b \rightarrow s\gamma$ remains SM-like.

Non-SM sZb couplings

LP. Silva — Weak Decays, CP Violation and CKM

p.29

WIN03

Status of $B \rightarrow \Phi K_S$

- Experimental central values are in a state of flux
- Current average for $\beta_{\Phi Ks}$ differs from $\beta_{\Psi Ks}$ by 2.7 σ
- If the effect remains, comparison with other measurements of β could discriminate between different NP models

LP. Silva Weak Decays, CP Violation and CKM WIN03 p.30

$B \rightarrow \pi^+ \pi^-$ is affected by penguin pollution

$$\lambda_{\pi\pi} = \frac{q}{p} \frac{A(\overline{B} \to \pi^{+}\pi^{-})}{A(B \to \pi^{+}\pi^{-})} = e^{-2i\beta} \frac{e^{-i\gamma} < t > +e^{+i\beta} }{e^{+i\gamma} < t > +e^{-i\beta} }$$
$$= e^{-2i(\widetilde{\beta}+\gamma)} \frac{1+r e^{i\delta}}{1+r e^{i\delta}} e^{i(\beta+\gamma)}}{1+r e^{i\delta}} re^{-i(\beta+\gamma)}} re^{i\delta} = \frac{}{}$$

LP. Silva Weak Decays, CP Violation and CKM

p.31

WIN03

What can we learn from $B \rightarrow \pi^+ \pi^-$?

$$\lambda_{\pi\pi} = \mathbf{e}^{-2 \mathbf{i}} (\widetilde{\beta} + \gamma) \frac{1 + r e^{i\delta} e^{i(\beta + \gamma)}}{1 + r e^{i\delta} e^{-i(\beta + \gamma)}}$$

- SM
 β=β from ΨK_s; δ γ r unknown
- NP
 β̃ from ΨK_S; δ γ r and β unknown

Note: $S_{\pi\pi} + [sin(2\beta) = 0.736 \pm 0.049]$ also probes direct CPV

Measurements of $B \rightarrow \pi^+ \pi^-$

from HFAG

Obs.	Date	Date BaBar Belle		Average
S	previous	$-0.02 \pm 0.34 \pm 0.05$	$-1.23 \pm 0.41 \pm 0.08$	-0.47 ± 0.26
$\mathfrak{S}_{\pi\pi}$	2003	$-0.40 \pm 0.22 \pm 0.03$		-0.58 ± 0.20
C	previous	$-0.30 \pm 0.25 \pm 0.04$	$-0.77 \pm 0.27 \pm 0.08$	-0.49 ± 0.19
$C_{\pi\pi}$	2003	$-0.19 \pm 0.19 \pm 0.05$		-0.38 ± 0.16

LP Silva

Weak Decays, CP Violation and CKM

p.33

WIN03

Trapping the penguin: r

Use isospin Gronau & London PRL65, 3381 (1990)
 measure BR_{av}(π⁺π⁻), C_{π+π-}, S_{π+π-}, BR_{av}(π⁰π⁰), C_{π⁰π⁰}, BR_{av}(π⁺π⁰)
 ==> determine α with 16-fold ambiguity
 (if one could) measure also S_{π⁰π⁰}
 ==> determine α with usual 4-fold ambiguity

• Use "partial isospin" Grossman & Quinn PRD58, 017504 (1998) measure $S_{\pi+\pi-}$, $C_{\pi+\pi-}$, $BR_{av}(\pi^0\pi^0)$, $BR_{av}(\pi^+\pi^0)$ ==> $\delta_{\alpha} \leq 48^0$ at 90% c.l. Jawahery LP03

$$S_{\pi^+\pi^-} = \sqrt{1-C_{\pi^+\pi^-}^2} \sin 2(\alpha+\delta_{\alpha})$$

Trapping the penguin: r

• Use SU(3) [U-spin] Silva & Wolfenstein PRD49, 1151 (1994) measure $S_{\pi+\pi-}$, $BR_{av}(B \rightarrow K^+\pi^-)$

Expect $B \rightarrow K\pi$ to be penguin dominated ==> good source of information on the penguin

• Trust calculations of hadronic matrix elements

Trapping the penguin: r

Enormous courtesy of Höcker

errors: current/5

 $|\lambda_{\pi^0\pi^0}| = 1.00 \pm 0.08$

LP. Silva Weak Decays, CP Violation and CKM

p.36

WIN03

The usefulness of $B \rightarrow \pi^0 \pi^0$

- Current measurement of $BR_{av}(\pi^0\pi^0)$ provides bound on α
- $C_{\pi^0\pi^0}$ is the next goal since it enables the isospin analysis
- Current measurement of $BR_{av}(\pi^0\pi^0)$ is at odds with QCD based calculations of the hadronic matrix elements

Some $B \rightarrow PP$ decays

The next table has been compiled from the following references:

- Fry LP'03
- Keum and Sanda ph/0306004 pQCD
- Beneke & Neubert ph/0308039 QCDF
- Chiang, Gronau & Rosner ph/0306021 and Gronau & Rosner ph/0307095 SU(3)
- Fu, He & Hsiao ph/0304242 U(3)

Mode	pQCD	QCDF		SU(3)	U(3)	BR _{exp}
$B^0 \rightarrow \pi^+ \pi^-$	6 – 11	8.9	+4.0 +3.6 +0.6 +1.2 -3.4 -3.0 -1.0 -0.8			
$B^0 \rightarrow \pi^0 \pi^0$	0.33 - 0.65	0.3	+0.2 +0.2 +0.3 +0.2 -0.2 -0.1 -0.1 -0.1	0.4 - 1.6	1.2 – 2.7	
$B^+ \rightarrow \pi^+ \pi^0$	2.7 – 4.8	6.0	+3.0 +2.1 +1.0 +0.4 -2.4 -1.8 -0.5 -0.4			
$B^0 \rightarrow K^+ \pi^-$	13 – 19	16.3	+2.6 +9.6 +1.4+11.4 -2.3 -6.5 -1.4 -4.8			
$B^0 \rightarrow K^0 \pi^0$	8-14	7.0	+0.7 +4.7 +0.7 +5.4 -0.7 -3.2 -0.7 -2.3			
$B^+ \rightarrow K^0 \pi^+$	14 – 26	19.3	+1.9+11.3+1.9+13.8 -1.9 -7.8 -2.1 -5.6			
$B^+ \rightarrow K^+ \pi^0$	8-14	11.1	+1.8 +5.8 +0.9 +6.9 -1.7 -4.0 -1.0 -3.0			
$B_0 \rightarrow K_0 \underline{K}_0$	1.4	1.35	+0.41+0.71+0.13+1.09 -0.36-0.48-0.15-0.45	0.6 - 0.8	0.5 – 1.1	
$B^+ K^+ \overline{K^0}$	1.4	1.36	+0.45+0.72+0.14+0.91 -0.39-0.49-0.15-0.40	0.6 - 0.9	0.6 - 1.2	

Note: $B^0 \rightarrow K^+K^-$, not shown, is annihilation-dominated and expected to be ~10⁻⁸

All BR x 10⁻⁶

WIN03

JP Silva Weak Decays CP Violation and CKM

p.39

Mode	pQCD	QCDF		SU(3)	U(3)	BR _{exp}
$B^0 \rightarrow \pi^+ \pi^-$	6 – 11	8.9	+4.0 +3.6 +0.6 +1.2 -3.4 -3.0 -1.0 -0.8			4.55±0.44
$B^0 \rightarrow \pi^0 \pi^0$	0.33 – 0.65	0.3	+0.2 +0.2 +0.3 +0.2 -0.2 -0.1 -0.1 -0.1	0.4 – 1.6	1.2 – 2.7	1.90±0.47
$B^+ \rightarrow \pi^+ \pi^0$	2.7 – 4.8	6.0	+3.0 +2.1 +1.0 +0.4 -2.4 -1.8 -0.5 -0.4			5.27±0.79
$B^0 \rightarrow K^+ \pi^-$	13 – 19	16.3	+2.6 +9.6 +1.4+11.4 -2.3 -6.5 -1.4 -4.8			18.16 ± 0.79
$B^0 \rightarrow K^0 \pi^0$	8-14	7.0	+0.7 +4.7 +0.7 +5.4 -0.7 -3.2 -0.7 -2.3			11.21 ± 1.36
$B^+ \rightarrow K^0 \pi^+$	14 – 26	19.3	+1.9+11.3+1.9+13.8 -1.9 -7.8 -2.1 -5.6			20.62 ± 1.35
$B^+ \rightarrow K^+ \pi^0$	8-14	11.1	+1.8 +5.8 +0.9 +6.9 -1.7 -4.0 -1.0 -3.0			12.82 ± 1.07
$B_0 \rightarrow K_0 \underline{K}_0$	1.4	1.35	+0.41+0.71+0.13+1.09 -0.36-0.48-0.15-0.45	0.6 - 0.8	0.5 – 1.1	<2.4
$\mathbf{B}^{\scriptscriptstyle +} \xrightarrow{} \mathbf{K}^{\scriptscriptstyle +} \overline{\mathbf{K}}{}^{\scriptscriptstyle 0}$	1.4	1.36	+0.45+0.72+0.14+0.91 -0.39-0.49-0.15-0.40	0.6 - 0.9	0.6 - 1.2	<1.3

Note: $B^0 \rightarrow K^+K^-$, not shown, is annihilation-dominated and expected to be ~10⁻⁸

All BR x 10⁻⁶

WIN03

LP. Silva Weak Decays, CP Violation and CKM

p.40

$B \rightarrow K \pi$ decays: diagrammatic decomposition

- Neglect annihilation and exchange diagrams
- Color-suppressed (tree and EW-penguin) are easily included: C+P_{EW}, T+P^c_{EW}, P-1/3P^c_{EW}

$$A(B^{0} \rightarrow K^{+} \pi^{-}) = -(P + e^{i\gamma} T)$$

$$R \quad \text{Fleischer-Mannel}$$
Buras-Fleischer R_n

$$\sqrt{2} A(B^{0} \rightarrow K^{0} \pi^{0}) = P - P_{EW}$$

$$\sqrt{2} A(B^{0} \rightarrow K^{0} \pi^{0}) = P - P_{EW}$$

$$\sqrt{2} A(B^{+} \rightarrow K^{+} \pi^{0}) = -(P + e^{i\gamma} T + P_{EW})$$

Ratios of $B \rightarrow K \pi$ decays

• From Gronau & Rosner ph/0307095

Mode	Branching ratio _{av} (10 ⁻⁶)	Partial width _{av} (10 ⁻⁹ eV)	A _{CP}
$B^0 \rightarrow K^+ \pi^-$	18.16 ± 0.79	7.77 ± 0.35	-0.088 ± 0.040
$B^0 \rightarrow K^0 \pi^0$	11.21 ± 1.36	$\textbf{4.79} \pm \textbf{0.58}$	
$B^+ \rightarrow K^0 \pi^+$	20.62 ± 1.35	8.19 ± 0.54	$\boldsymbol{0.003 \pm 0.059}$
$B^+ \rightarrow K^+ \pi^0$	12.82 ± 1.07	5.10 ± 0.43	$\boldsymbol{0.035 \pm 0.071}$

$$R = \frac{\Gamma(B^0 \to K^+ \pi^-)}{\Gamma(B^+ \to K^0 \pi^+)} = 0.948 \pm 0.074$$

$$R_c = \frac{2 \Gamma(B^+ \to K^+ \pi^0)}{\Gamma(B^+ \to K^0 \pi^+)} = 1.24 \pm 0.13$$

$$R_n = \frac{\Gamma(B^0 \to K^+ \pi^-)}{2 \, \Gamma(B^0 \to K^0 \pi^0)} = 0.81 \pm 0.10$$

 penguins have been measured and dominate the decays

• there are problems involving R_c and R_n

Fleischer-Mannels's insight

•
$$R = \frac{\Gamma(B^0 \to K^+\pi^-) + \Gamma(\overline{B}^0 \to \overline{K}^-\pi^+)}{\Gamma(B^+ \to \overline{K}^0\pi^+) + \Gamma(\overline{B}^- \to \overline{\overline{K}^0}\pi^-)} = 1 - 2\frac{T}{P}\cos\gamma \cos\delta + \left(\frac{T}{P}\right)^2$$

- Imagine that R<1; assume $\cos\delta > 0$
- ==> γ <u>cannot</u> be $\pi/2$, regardless of the exact values of $\cos\delta$ >0 and T/P
- ==> can learn more about γ with knowledge of T/P and δ
 Fleischer & Mannel PRD57, 2752 (1998)

I.P. Silva Weak Decays, CP Violation and CKM WIN03 p.43

Gronau-Rosners's improvement

- Can cope with R>1
- Eliminate δ using CP asymmetry

$$A_{CP} = \frac{\Gamma(B^0 \to K^- \pi^+) - \Gamma(B^0 \to K^+ \pi^-)}{\Gamma(\overline{B^0} \to K^- \pi^+) + \Gamma(B^0 \to K^+ \pi^-)} = -2\frac{T}{P} \sin\gamma \sin\delta/R$$

==> Extract a value for γ, rather than a bound (if you know T/P)

Gronau & Rosner PRD57, 6843 (1998)

- Upper (lower) branch when $\cos\gamma\cos\delta < 0 (>0)$
- Used T/P_{low} = 0.17–0.04 from B⁺ \rightarrow K⁰ π ⁺ and B \rightarrow π lv
- ==> Improvement on the CP conserving R is much more important for γ than the CP violating A_{CP}!!

Intriguing $B \rightarrow K\pi$ relation

So far:

- $R-1 = 0.052 \pm 0.074$ & asym ==> constraint on γ
- Can also use $R_c + R_n 2 = 0.05 \pm 0.23$
- However, R_c-R_n=0.43±0.23 is difficult to explain because

$$\Delta_{cn} \equiv R_c - R_n = O\left(\frac{P_{EW}, T}{P}\right)^2 \rightarrow \text{In a } \Delta I = 1$$

combination

==> 2σ hints seen in $B \rightarrow K\pi$ decays

WIN03

Look back at diagrammatic decomposition

==> Problems occur in the ratios involving P_{EW} and π^0

Possible explanations

• Possible problem with estimate of π^0 detection

Gronau & Rosner ph/0307095

• Study γ with $R_c R_n$ instead

• Enhanced $\Delta I=1$ pieces, electroweak penguins

Grossman, Neubert & Kagan JHEP9910, 029 (1999) Yoshikawa ph/0306147, Gronau & Rosner ph/0307095, Buras et al. ph/0309012

- It is possible to fit simultaneously R_c and R_n with P_{EW}
- This requires $P_{EW} \approx i P/2$
- Such a large strong phase is at odds with QCD factoriz.

4 – Conclusions

• Progress in the field is finally dictated by experimentalists (Free at last! Free at last...)

- $\beta_{\Phi Ks}$ differs from $\beta_{\Psi Ks}$ by 2.7 σ

- 2σ hint for isospin violating new physics seen in $B \to K\pi$ decays

4 – Conclusions

BR_{av}(π⁰π⁰) disagrees with QCD based calculations

• $C_{\pi^0\pi^0}$ is the next big thing

• Further information on γ will come from $B \rightarrow D$ decays

p.50

WIN03

• **B**_s to get complete picture

LP. Silva Weak Decays, CP Violation and CKM

Weak Decays CP Violation and CKM

p.51