On-peak and off-peak neutrino oscillation experiments

- Synergies among long-baseline experiments: a peculiar problem of the PMNS precision era.
- Three scenarios:
- $v_{\mu} \rightarrow v_{e}$ unaccessible to Phase I superbeams (null result in next 10 years!)
 - Early observation of $v_{\mu} \rightarrow v_{e}$ (evidence at MINOS/ICARUS/OPERA)
- $v_{u} \rightarrow v_{e}$ observed only by Phase I superbeams (evidence at JPARC-Ph1 or NuMI-OA)

F. Terranova - INFN Frascati

Two-family optimal tuning

Maximum oscillation rate at $\Delta m^2 L/4E = \pi/2 \implies$ "on-peak"

In practice it turned out to be a tough job... especially at the atmospheric scale!

kinematic threshold for τ production

CNGS

$v_{\mu} \rightarrow v_{e}$ in the full PMNS scenario

Taylor expansion around $\alpha \equiv \Delta m^2_{24} / \Delta m^2_{34}$ and $\sin^2 2 \vartheta_{43}$ for constant matter density:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} [(1 - \hat{A}) \Delta]}{(1 - \hat{A})^{2}} \quad O_{1} \text{ (leading term)}$$

$$-\alpha \sin 2\theta_{13} \notin \sin \delta_{CP} \sin \Delta \frac{\sin [\hat{A} \Delta]}{\hat{A}} \frac{\sin [(1 - \hat{A}) \Delta]}{(1 - \hat{A})} \quad O_{2} (\sim \sin \Delta)$$

$$+\alpha \sin 2\theta_{1} \underbrace{\xi}_{0} \cos \delta_{CP} \cos \Delta \frac{\sin [\hat{A} \Delta]}{\hat{A}} \frac{\sin [(1 - \hat{A}) \Delta]}{(1 - \hat{A})} \quad O_{3} (\sim \cos \Delta)$$

$$+\alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2} [\hat{A} \Delta]}{\hat{A}^{2}} \quad 0_{3} (\sim \cos \Delta)$$

$$\varphi_{4} \text{ (suppressed by } \alpha^{2})$$

$$\xi \equiv \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sim O(1) \quad \hat{A} \equiv 2\sqrt{2}G_{F} n_{e} \frac{E}{\Delta m_{31}^{2}} \quad \Delta \equiv \frac{\Delta m_{31}^{2}L}{4E}$$

The hierarchy among the O's depends on the

on peak / off peak choice!

dominance of O₁ and O₂ terms and low sensitivity to sign of Δm^{2}_{31} On peak, "short" baseline experiments (JHF-SK) \Rightarrow (small matter effects)

An (obvious) warning:

The $O_1 O_3$ dominance is a by-product of the main physics case:

observation of v_{τ} appearance

OPERA	alone	(5 years run	1 @ 6.76x	10^{19} pot / yea	r)
Channel		$\Delta m^2 (10^{-3} e^{-1})$	V^2)	(eff x BR)	Bkg
	1.3	2.0	3.0		
t→e	1.8	4.1	9.2	3.4%	0.31
n∕←1	1.4	3.4	7.6	2.8%	0.33
τ→h	1.5	3.5	7.8	2.9%	0.42
Total	4.7	11.0	24.6	9.1%	1.06

	0.71
¹⁹ pot / year)	9.1%
@ 4.5x10	16.4
(5 years run	7.3
alone	3.1
DPERA	Γotal

9.1%	
16.4	
7.3	
3.1	
tal	

Can we get anything good from the O₁O₃ dominance

to study the (1,3) sector of the PMNS matrix?

ICARUS: 2.4 kton fiduci

OPERA: 1.7 kton fiducia

Tau detection through kink id. or kinematical analysis: <u>outstanding granularity</u>

Can we use it for V_e appearance?

OPERA

- Removal of V_τ contamination
 on event-by event basis (kink finding)
 - π⁰/e separation through grain counting
 - BUT
- Low mass

ICARUS

- More massive than OPERA
- π⁰/e separation through g conversion vertex id (Ar has low X_n)
- BUT
- Higher v_{τ} contamination

Two family approximation

 θ_{13}

 $Sin^22\theta_{13}$

Experiment

 $\nabla m_{\Sigma}^{53} (e \Lambda_{\Sigma})$

The null hypothesis and the Phase I \rightarrow Phase II strategy

Since the physics reach of High Intensity Superbeams (e.g. JPARC-<u>PhII</u>) and NuFact depends critically on the size of $\sin^2 2\vartheta_{13}$

null result ⇒ discourage the SB/NuFact physics programme signal \Rightarrow precision MNS physics at SB/NuFact Phase I experiments \Rightarrow high sin²2 ϑ_{13} sensitivity

Three ways to build a good phase I experiment:

- A "pure" $\sin^2 2\vartheta_{13}$ experiments (e.g. Reactors)
- $\delta_{\rm CP}$ but able to disentangle $\delta - \vartheta_{13}$ cancellation effects (JPARC-Ph1 + antineutrino runs) An experiment sensitive to
 - An experiment which has maximal ϑ_{13} sensitivity for maximal \mathcal{S}^{1}

What happens in $V_{\mu} \rightarrow V_{e}$ appearance experiments?

5 years of data taking

What can we say on Phase II if we observe a null result in JHF-SK?

Assuming complete ignorance on $\delta_{\rm CP}$ and using no other information to lift the ϑ_{13} - δ_{CP} ambiguity...

In case of null result, JPARC-Ph1 <u>must</u> foresee an antineutrino run to fully exploit its outstanding sensitivity. Otherwise, we will not learn much more than CNGS!!

The case of NuMI-OA in anti-v mode

Chance to make the big discovery even starting later than JPARC-Ph1 An alternative: running NuMI-OA directly in anti-v mode.

JPARC-Ph1 in v mode (5y)

corrected for $\sigma(anti-n)$ and π -/ π + yield

NUMI-OA in anti-v mode (5y). Yield

Just the opposite: $\vartheta_{13} > 7^0$

Accessible (3 σ) to MINOS/ICARUS/OPERA at ANY value of δ

The situation before the first JPARC-Ph1 results (3y)?

ۍ. وي.(ورمط) و	- 100	ۇيە(grad) مەرۋى	- 100	å₅(grad) ∂	-100
	-	1		(7.5+3.9-6.3)°	$(10.+3.7-4.4)^{\circ}$
$\left. \Theta_{13} \right _{\mathrm{max}}$	5.5°	5.8°	7.0°	11.4°	13.7 ^o
$\left. \Theta_{13} \right _{ m min}$				1.2°	5.6°
$\theta_{13} _{true}$	1°	2.5°	5.0°	7.5°	10°

After JPARC-Ph1 data taking

5y JPARC + 8y CNGS

Mass hierarchy with CNGS?

Obvious! $(O_3=0 \text{ for max CPV})$

Marginal! More than 40% Type II error for 90% significance even assuming ϑ_{13} well measured by JPARC/NUMI Would need a high-intensity off-peak experiment...

The intermediate case: about $4^0 < \vartheta_{13} < 7^0$

Off peak will not contribute (null result)

Retain classical results of:

- V.Barger et al., Phys.Lett. B560 (2003) 75
- P.Huber et al., Nucl.Phys. B654 (2003) 3
- H.Minakata et al., Phys.Rev D68 (2003) 013010
- Better run JPARC in v mode and NuMI-OA in anti-v mode for high precision in the ϑ_{13} - δ_{CP} plane
 - Run both of them in v mode to focus on mass hierarchy

Conclusions

- by the choice of the neutrino run. A dangerous manifestation of the (δ -• <u>Null result at JPARC-Ph1</u> : WARNING! δ_{CP} could be <u>huge</u> but hidden ϑ_{12}) correlation!
- The anti-nu choice (done after the nu run or in parallel by NUMI-OA) is mandatory to take decisions about the Phase II
- Positive result at <u>MINOS or CNGS</u>: Great time for oscillation physics! Synergic use of MINOS+ CNGS + JPARC-Ph1 + NuMI-OA:
 - to constrain $(\delta \vartheta_{13})$
- to determine the sign of Δm^2_{atm}
- Signal seen at JPARC. NuMI-OA contribute to precision measurement • $4^{0} < \vartheta_{12} < 7^{0}$ Another great season for Japanese neutrino physics! of $(\delta - \vartheta_{13})$ in anti-nu mode, sign Δm^2_{atm} in neutrino mode