Testing the Higgs Potential at e+e- and Hadron Colliders

Albert De Roeck CERN

Thanks to M. Battaglia, U. Bauer, E. Boos, D. Rainwater

Reconstructing the Higgs Potential

The shape of the Higgs potential

Determination of the shape needed for the complete investigation of the Higgs profile and to obtain a direct proof of the mechanism of EW symmetry breaking

$$V(\Phi^*\Phi) = \lambda(\bar{\Phi}^*\Phi - \frac{1}{2}v^2)^2$$

Tests may reveal the extended Nature of the Higgs sector

Higgs potential

Higgs potential can be expressed in terms of the Higgs field as:

$$V_H = \frac{m_H^2}{2} H^2 + \frac{m_H^2}{2v} H^3 + \frac{m_H^4}{8v^2} H^4$$

$$\lambda_{HHH} = 3m_H^2/v^* \qquad \lambda_{HHHH} = 3m_H^2/v^2$$

$$v = (\sqrt{2G_F})^{-1/2} \simeq 246 GeV$$

Access to the potential via Higgs self coupling (triple Higgs coupling), i.e. via double Higgs production

Quartic Higgs self-coupling 2-3 orders of magnitude smaller than triple Higgs coupling \rightarrow concentrate on λ_{HHH}

$$\lambda_{SM} = \frac{m_H^2}{2v^2}$$

* Sometimes other notation used:
$$\lambda_{SM} = \frac{m_H^2}{2v^2}$$
 $V(\eta_H) = \frac{1}{2} m_H^2 \eta_H^2 + \lambda v \eta_H^3 + \frac{1}{4} \tilde{\lambda} \eta_H^4$

Experimental prospects

Colliders for which double Higgs production has been studied

 TeV Class Linear Collider (TESLA, NLC, JLC) e+e-, $\sqrt{s} = 500-1000 \text{ GeV}$ (0.5-2) ab⁻¹ 2-3·10³⁴cm⁻² s⁻¹

Photon collider

e+e-,
$$\sqrt{s} = 500-1000 \text{ GeV} (0.5-2) \text{ ab}^{-1}$$

$$10^{34} \text{cm}^{-2} \text{ s}^{-1}$$

Multi-TeV Linear Collider

e+e-,
$$\sqrt{s} = 1-5 \text{ TeV}$$
 (3-5) ab⁻¹

$$10^{35} \text{cm}^{-2} \text{ s}^{-1}$$

· LHC

pp,
$$\sqrt{s} = 14 \text{ TeV } 0.3-0.6 \text{ ab}^{-1}$$

$$10^{34} \text{cm}^{-2} \text{ s}^{-1}$$

· SLHC

pp,
$$\sqrt{s} = 14 \text{ TeV} \quad 3-6 \text{ ab}^{-1}$$

$$10^{35} \text{cm}^{-2} \text{ s}^{-1}$$

· VLHC

pp,
$$\sqrt{s} = 200 \text{ TeV} \quad 0.3-1.2 \text{ ab}^{-1}$$

λ_{HHH} at a LC

Processes:
$$e^+e^- \to hhZ$$
 $e^+e^- \to (WW)\nu\bar{\nu} \to hh\nu\bar{\nu}$.

Y. Yasui et al LCWS02

Parton level calculation e- beams assumed polarized

HHZ mode dominant at 500 GeV HHvv mode dominant at high beam energies

Promising sensitivity

e+e->ZHH

Only first diagram sensitive to λ_{HHH}

Other diagrams dilute the sensitivity

Cross sections for three collider energies. Small!

Arrows show variation of λ_{HHH} from 1/2 to 3/2 the SM value

Higgs Potential

e+e->ZHH

Djouadi, Kilian, Muhlleitner, Zerwas

Variation of the cross section with the modified trilinear coupling

Energy dependence for a fixed Higgs mass with a modified trilinear coupling κλ_{HHH}

Results: e+e->ZHH @ 500 GeV

Castanier, Gay, Lutz, Oloff

$$hhZ \rightarrow b\bar{b}b\bar{b}\bar{\ell}^+\ell^ hhZ \rightarrow b\bar{b}b\bar{b}q\bar{q}$$
 Final states

- Detector simulation (SIMDET fast simulation/TESLA Detector)
- 2 b-quarks identified/Neural Network
- Backgrounds (WW,Zy,ZZ,WWZ,ZZZ,ttH,hZ...)

$m_{\rm h}({ m GeV/c^2})$	$\sigma_{\rm hhZ}({ m fb})$	$ m N_{hhZ}^{500}$	$\epsilon_{ m hhZ}$	$\Delta\sigma/\sigma$		
				$\mathcal{L} = 500 \mathrm{fb}^{-1}$	$1000 {\rm fb}^{-1}$	2000fb^{-1}
120	0.186	93.	43%	24.1%	17.3%	11.6%
130	0.149	74.	43%	26.6%	19%	17.7%
140	0.115	57.	39%	32%	23%	17%

selection	variable	$\Delta \lambda / \lambda$		
		$\mathcal{L}=500 \mathrm{fb}^{-1}$	$1000 {\rm fb^{-1}}$	$2000 { m fb}^{-1}$
В	$\mathcal{B}^{ ext{recoil}}$	42.2%	30.3%	20.3 %
D	NN output	35.7%	22.6%	18.0%

23% (40%)
Precision for
1 ab⁻¹ at 500GeV
for
m_H=120(140) GeV

S/√B=4.2

Results: e+e->ZHH @ 500 GeV

Additional diagrams dilute the λ_{HHH} sensitivity of the $\sigma(e+e-\rightarrow HHZ)$ measurement:

Try to exploit the scalar decay and phase space properties to enhance sensitivity to the HHH vertex contribution

Results: e+e->ZHH @ 500 GeV

e+e- >HHVV

Higher energies: HHvv significantly larger cross section than HHZ

Study: $HH \rightarrow b\bar{b}b\bar{b}, W^+W^-W^+W^-$

e+e- →HHvv (3 TeV)

Battaglia, Boos, Yao, ADR

$$e^+e^- o HH
u \bar{
u} o b \bar{b} \ b \bar{b} \ + \ E_{missing}$$

Include detector simulation, backgrounds (COMPHEP), CLIC beam spectra...

Experimental challenge: Higgses often forward! Require 4B's or 4W's

e+e- >HHVV->bbbbvv

Select b-tagged events with significant missing ET, force 4-jets Studies include detector simulation, backgrounds...

$$\left(rac{\delta \sigma_{HH
u
u}}{\sigma_{HH
u
u}} \simeq extsf{0.12 ab}^{-1}
ight)$$

Results: e+e- →HHvv

12% precision for 3 ab⁻¹ at 3 TeV

Results: e+e- →HHvv

Higgs Potential

Results: e+e- >HHVV

Improve further the results by using the scalar nature of the Higgs

Results: e+e- →HHvv

Improve the results further by using the scalar nature of the Higgs

Fit to the cross sections and the normalized shape of the $|\cos\theta|$ distribution

Results: e+e- →HHVV

Results for 3 TeV and 5 ab⁻¹

$M_H ({ m GeV})$	$\sigma_{HH uar u}$ Only	$ \cos \theta^* $ Fit
120	\pm 0.094 (stat)	$\pm 0.070 \text{ (stat)}$
180	\pm 0.140 (stat)	$\pm 0.080 \text{ (stat)}$

Including a fit to the $\cos\theta$ distribution improves the results with 25-30%

Further improvement using polarized beams is possible ($x \sim 1.5$)

The quartic couplings will remain elusive:

The table below gives the cross section in atobarns I.e. one expects 1-2 (5) events/year for CLIC at 5 (10) TeV

	\sqrt{s}	$g_{HHHH}/g_{HHHH}^{SM} = 0.9$	$g_{HHHH}/g_{HHHH}^{SM} = 1.0$	$g_{HHHH}/g_{HHHH}^{SM} = 1.1$
ſ	3 TeV	0.400	0.390	0.383
١	5 TeV	1.385	1.357	1.321
١	10 TeV	4.999	4.972	4.970

The Higgs potential

"Visual example": compare measurement from Higgs mass with results from λ_{HHH} measurements

For 500 GeV e+e-

For 3 TeV e+e-

Photon Collider

D. Asner et al.

$$\delta \mathcal{L}_{\text{Higgs}} = -\frac{\delta \kappa}{2} \frac{m_H^2}{v} \left[H^3 + \frac{3}{v} G^+ G^- H^2 \right] + \cdots,$$

$$e+e-\rightarrow HHZ \Leftrightarrow \gamma\gamma \rightarrow HH$$

Event rates similar Final state cleaner (higher eficiency)?

Parton level cross sections

	$\sqrt{s_{ee}} = 500 \text{ GeV}$			$\sqrt{s_{ee}} = 800 \text{ GeV}$			
	$\int \mathcal{L}_{th} \ (\text{fb}^{-1}/10^7 \text{ s}) \ \sigma \ (\text{fb}) \text{ Event yield}$			$\int \mathcal{L}_{th} \ (\text{fb}^{-1}/10^7 \text{ s}) \ \sigma \ (\text{fb}) \text{ Event yiel}$			
Spin-0	40	0.3	13	120	0.3	39	
Spin-2	20	0.1	1-2	60	0.2	1-2	
e^+e^-	160	0.2	32	250	0.15	38	

⇒ needs a study of the dilution, backgrounds, detector effects

Hadron Colliders: PP →HHX

Contributing diagrams

Higgs Potential

Albert De Roeck (CERN) 21

PP →HHX

Cross sections for three processes Small!

Arrows show variation of λ_{HHH} from 1/2 to 3/2 the SM value

Blondel, Clark, Mazzucato (ATLAS)

ATLAS Study: study decay modes: $H\to WW$ and $H\to ZZ$ 150<M $_H<$ 200 GeV LO (!) cross sections. K factor for signal in range 1.5-2 Detector simulation, backgrounds

Results: PP →HHX (LHC)

$$pp \to HH \to WWWW \to lvqqlvqq \ (\sigma*BR \simeq 0.24fb^{-1} \ {\rm for} \ m_H = 200 GeV)$$

 $pp \to HH \to WWWW \to lvlvqqqq \ (\sigma*BR \simeq 0.12fb^{-1} \ {\rm for} \ m_H = 200 GeV)$
 $pp \to HH \to WWWW \to lvlvlvqq \ (\sigma*BR \simeq 0.072fb^{-1} \ {\rm for} \ m_H = 200 GeV)$
 $pp \to HH \to WWWW \to lvlvlvlv \ (\sigma*BR \simeq 0.006fb^{-1} \ {\rm for} \ m_H = 200 GeV)$
 $pp \to HH \to WWZZ \to qqqqllqq \ (\sigma*BR \simeq 0.09fb^{-1} \ {\rm for} \ m_H = 200 GeV)$
 $pp \to HH \to WWZZ \to lvqqllqq \ (\sigma*BR \simeq 0.055fb^{-1} \ {\rm for} \ m_H = 200 GeV)$

Channels studied

	lvqqlvqq	lvqqlvqq	lvlvlvqq	lvlvlvlv	llqqqqqq	lvqqllqq
$HH m_H = 200 \ GeV$	22	58	5.8	1.	16	6.0
t ar t	9	33678	79.	15.	665	17
WW	0	122	0.	0.	0	0
ZZ	0	1240	0.3	0	288	1.8
WZ	6	10	16.0	0	0	33.7
WWW all processes	150	-	-	-	-	-
WH only	37	183	7.1	1.9	50	12.4
ZH	6	322	14.1	11.	98	33.2
Wtt	159	0	0.	0	0	0
$Zbar{b}$	0	104	0.	0	28	0
$t \bar{t} t \bar{t}$	3	-	-	-	-	-
Total B	333	35659	117.	27.9	1129	98.4
S/B	0.07	$2*10^{-3}$	0.05	0.04	0.01	0.06
S/\sqrt{B}	1.2	0.3	0.53	0.19	0.5	0.61

Pretty hopeless for LHC...

Results: PP →HHX (SLHC)

For SLHC (6000 fb⁻¹) λ_{HHH} becomes accessible!

	lvqqlvqq	lvqqlvqq	lvlvlvqq	lvlvlvlv	llqqqqqq	lvqqllqq
$HH m_H = 200 \ GeV$	220	580	58	11.	160	60
$t\bar{t}$	90	336780	790.	150.	6650	170
WW	0	1225	0.	0.	0	0
ZZ	0	12404	3.5	0	2883	17
WZ	60	971	160	0	0	337
WH	374	1831	71	19	505	124
WWW	1500	-	-	-	-	-
ZH	59	3223	141	111.	977	332
Wtt	1594	0	3	0	0	0
$Zbar{b}$	0	1045	0.	0	285	0
$t\bar{t}t\bar{t}$	30	-	-	-	-	-
Total B	3333	356595	1169	279	11300	984
S/B	0.07	$2*10^{-3}$	0.05	0.04	0.01	0.06
S/\sqrt{B}	3.1	1.	1.7	0.7	1.5	1.9

Mass (GeV)	200	200 (fit)	170
$\frac{d\sigma}{\sigma}$	27%	17%	20%
$\frac{d\lambda}{\lambda}$	25%	15%	19%

Results: PP →HHX

Baur, Plehn, Rainwater

- Studied signals at LHC, SLHC and VLHC (and LC),
- No detector simulation, but acceptance cuts, efficiencies
- NLO through K-factors
- \bullet Use minimum jet distance and M_{vis} quantities to improve S/B

For
$$M_H > 150$$
, examine $4W \to \text{multipleptons}$.
 $\ell^{\pm}\ell^{\pm} + 4j$, $\ell^{\pm}\ell^{\pm}\ell^{\mp} + 2j$

 \rightarrow LHC can confirm $\lambda \neq 0$ (3-pt. Higgs coupling) for $150 < M_H < 200$ GeV.

For $M_H < 150$, look for $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$.

→ totally hopeless at LHC, SLHC, 1st measurement at VLHC if no TESLA.

Results: PP →HHX

$$m_{vis}^2 = \left[\sum_{i=\ell,\ell',\,\text{jets}} E_i\right]^2 - \left[\sum_{i=\ell,\ell',\,\text{jets}} \mathbf{p_i}\right]^2$$

Shape of the M_{vis} distribution used to derive sensitivity bounds

Results: PP →HHX

Baur, Plehn, Rainwater

Limits achievable at the 95% CL. for $\Delta\lambda = (\lambda - \lambda_{SM})/\lambda_{SM}$

 λ = 0 can be excluded at 95% *C*L.

 λ can be determined to 20-30% with SLHC

Higgs Potential

PP →HHX

Possible reasons for differences

Parton level ⇔ Detector Level

ATLAS includes parton showers

HO effects

Incorrect simulation ttj of background (ATLAS)? (D.R.)

Jury still out...
CMS starting

Higgs Potential

Albert De Roeck (CERN) 28

Results: PP →HHX (VLHC)

Baur, Plehn, Rainwater

Can reach an accuracy of 8-30% (95% CL) for M_H 140-200 GeV

Lower M_H at pp colliders?

 $HH \rightarrow 4b$ at LHC

 $HH o bar{b} au^+ au^-$ at LHC

What about $HH \to b\bar{b}b\bar{b}$ for lower M_H @ LHC?

Unfortunately, QCD $b\bar{b}b\bar{b}$ is factor 1000 larger...

 $M_H=120$ GeV, ϵ_{ID} and QCD bkg (in terms of λ_{SM}):

lumi	1σ upper	1σ lower
LHC, 300 fb ⁻¹	+10	-7
SLHC, 3000 fb ⁻¹	+ 6	-3

What about $HH \rightarrow b\bar{b}\tau^+\tau^-$ @ LHC instead?

 $M_H=120$ GeV, ϵ_{ID} and QCD $Zb\bar{b}$ bkg (in terms of λ_{SM}):

lumi	1σ upper	1σ lower
SLHC, 3000 fb ⁻¹	+3.1	-1.6
VLHC, 300 fb ⁻¹	+1.0	-0.86

Pretty grim, unless no TESLA...

Comparison for $M_H=120$ GeV

Baur, Plehn, Rainwater

Precise information from a Linear Collider

Hadron colliders can not contribute much (VLHC?)

$$\frac{2}{v^2 m_H^2} V(x) = x^2 + \lambda_{HHH} x^3 + \frac{1}{4} \tilde{\lambda}_{4H} x^4$$

$$x = \frac{\eta_H}{v}$$
 η_H = Higgs field

$$ilde{\lambda}_{4H} = ilde{\lambda}/\lambda_{SM}$$
 assume $ilde{\lambda}_{4H} = 1$

Higgs Potential

Comparison for M_H=180 GeV

- First hint possible from LHC
- Measurement at SLHC
- LC (<~ 1 TeV) no information

Both Multi-TeV collider and VLHC can provide very precise measurements

$pp \rightarrow bb\gamma\gamma$ and $pp \rightarrow bb\mu\mu$

pp→bbμμ not useable

 $pp \rightarrow bb\gamma\gamma$ promising

- Apply photon-photon and photon-b separation cuts
- For m_H =120 GeV and 600 fb⁻¹ expect 6 events at the LHC with S/B~ 2 (single b tag)
- Interesting measurement at the SLHC (double b tag)

	$m_H = 120 \text{ GeV}$			$m_H = 140 \text{ GeV}$		
machine	"hi"	"lo"	bkg. sub.	"hi"	"lo"	bkg. sub.
LHC, 600 fb^{-1}	$^{+1.9}_{-1.1}$	$^{+1.6}_{-1.1}$	$^{+0.94}_{-0.74}$	_ _		
SLHC, 6000 $\rm fb^{-1}$	$^{+0.82}_{-0.66}$	$^{+0.74}_{-0.62}$	$^{+0.52}_{-0.46}$	$^{+1.7}_{-0.9}$	$^{+1.4}_{-0.8}$	$^{+0.76}_{-0.58}$
$\rm VLHC,600~fb^{-1}$	$^{+0.44}_{-0.42}$	$^{+0.42}_{-0.40}$	$^{+0.32}_{-0.30}$	$^{+0.82}_{-0.62}$	$^{+0.66}_{-0.54}$	$^{+0.38}_{-0.34}$
VLHC, 1200 $\rm fb^{-1}$	$^{+0.32}_{-0.30}$	$^{+0.30}_{-0.28}$	$^{+0.26}_{-0.22}$	$^{+0.76}_{-0.58}$	$^{+0.62}_{-0.50}$	$^{+0.36}_{-0.32}$

New

Needs accurate prediction of the bbyy background rate

Summary

- · LHC
 - Will have a hard time to measure say something on $\lambda_{\mbox{\scriptsize HHH}}$
 - Can possibly establish that $\lambda_{HHH} \neq 0$ if 150 $\langle M_H \langle 200 \text{ GeV} \rangle$
- SLHC
 - Can measure λ_{HHH} to 20-30% if 150 $\langle M_{H} \langle 200 \ GeV \rangle$
 - Can measure λ_{HHH} to 50-80% if 120 $\langle M_H \langle 140 \text{ GeV} \rangle$
- · LC (0.5-1 TeV)
 - Can measure λ_{HHH} to 20-35% if M_H <140 GeV
- CLIC (1-5 TeV)
 - Can measure λ_{HHH} to 7-15% for M_H up to 240 GeV
- VLHC
 - Can measure λ_{HHH} to 4-15% for 140 $\langle M_H \langle 200 \ GeV \rangle$
 - Can measure λ_{HHH} to 20-40% for 120<M_H<140 GeV

LC results can improve by factor up to 1.3-1.7 when polarised beams are used VLHC (SLHC) may need LC to get precise (top Yukawa coupling, HWW...)

WIN03 October 2003 Higgs Potential Albert De Roeck (CERN) 34