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The mass of the muon (m,/m, = 207) gives a u
collider some very desirable features:

— Less synchrotron (~m), brem and
initial state radiation =» muons don’t
radiate as readily as electrons:

— Larger couplings to Higgs-like
particles - if m, <2m,,,
possible to study Higgs boson
production in the s-channel

This gives four compelling arguments for the
muon collider versus other machines:

1. Possible low energy Higgs Factory
2. Narrower energy spread

3. Easier acceleration

4. Smaller machine footprint

From a Neutrino Factory
to Muon Collider

Much of what has been learned from
the neutrino factory feasibility studies
can be applied to a muon collider:
Targetry
Capture and Decay
Transverse Cooling
Accelerating a Large Beam

A muon collider requires the muon
beams to be cooled by several orders of
magnitude compared with a neutrino
factory.

All the muons must be in one bunch =»
6 dimensional cooling!
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Muons are

> Only'BésH&IdEvhere s-channel resonance can be
observed

» The Higgs width can be measured directly

»h —uu coupling is a direct test of the fermion mass
generation mechanism. It can be measured to +/-4%
with L = 0.2 fb-1 if the beam energy resolution
R=0.003%

..also, you can get a harrow beam
energy spread

100 —S/vB=4 at peak R=0.003%

I, =3 MeV
Muon collider can provide the most 80 7]
precise measurement of the mass of a
light Higgs using a beam energy scan
of the resonance
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Regions of parameter space

other machines just can’t probe

...but must first raise Vs !

spot”

A possible LHC and LC
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MH-MA: If masses are degenerate, they can
only be resolved by exploiting the narrow
beam energy spread at a muon collider
using a scan.
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And, we don’t know what
lies beyond the

._.:mm_mmmqmw«mmvma_\a mmm@mm_Mm that there “has” to be

something at or approaching the TeV energy scale, but
sooner or later we will want a multi-TeV lepton machine for
precision measurements of SEWS (strongly interacting
electroweak sector)

Muon colliders are smaller than

YLHC 100 Te¥Y . .
;- (5 - 17 TV} © other machines for a given energy
(e ~ . eless real estate
™ SSC 40 TeVp
fa — m.ﬂnq_n.,.%

The energy not radiated away is that
much less for RF to accelerate

High energy muon colliders
retain the possibility of
narrow beam energy spread
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» R: Gaussian spread in beam energy can be made very small, but at cost of luminosity:
Some “conservative” calculations:
L ~(0.5,1,6) * 10%'cm2 s for R=(0.003, 0.01, 0.1)% and
~ 100 GeV
_.V\\A ,3,7) * 10%2cm=2 s for (200, 350, 400) GeV and R~ 0.1%
So, uC best for: h W+ )\\mgm:\m%m3| 0.01R
HO and®0 peak separation, Higgs scan
CP of Higgs bosons
Good measurement of h T+T— POssible
> At FNAL unique opportunity for fip collisions:
200 GeV u beams in collision with 1 TeV p beam:
L~1.3*1028 cm=2s, = 894 GeV
Neutrino Factory a natural _Bmmw:ma_mﬁm step!
Luminosity can be improved by further R & D in emittance exchange, cooling, targetry.
May be the best for extreme energies

Can guarantee access to heavy SUSY particles, Z' and strong WW scattering if no Higgs
Bosons and no SUSY

» If u’s and e’s are fundamentally different, a uC is necessary!

VvV VY
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Higgs Factory

CoM energy (TeV) 3 0.4 0.1
p’s/bunch 2.5 % 1013 | 2.5 x 1013 5 % 1013 |
it /bunch 2 x 1012 | 2x10'2 4 % 1012
Rms Ap/p % 0.16 0.14 0.12 0.01 0.003 orders of magnitude
6-D ey (rm)? 1.7 % 1019 1.7 x 10719|1.7 x 10-1°|1.7 x 10-1°|1.7 x 10-1°|| More cooling than for
Rms ¢, (# mm-mrad) 50 50 85 195 290 av factory!
B* (em) 0.3 2.6 4.1 9.4 14.1
o, (cm) 0.3 2.6 4.1 9.4 14.1
orspot (pm) 3.2 26 86 196 294
og IP (mrad) 1.1 1.0 2.1 2.1 2.1
Luminosity cm™2%s™! 7 x 1031 1033 1.2 x 10°% | 2.2 x 103! 1031
0 =5x10*fb
Higgs /year 1.9x 10 | 4x10° | 3.9 x 10°

Also, high luminosity means fewer bunches!
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Muon Collider Schematic
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Possible Higgs factory..
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absorber  RF cavity absorber  RF cavity

Phase space equation:

Cooling term — Heating term (mult.scatt.)

With transverse focussing (solenoid) !
B ~ beam anvelope: 1=
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H Muons lose energy
by dE/dx and long—
itudinal momentum

dE replaced by r.f.

r.f. r.f. r.fl. r.f.

=15
3l
&

® To Minimize heating from Coulomb Scattering:

@ Small 3, (strong focusing) :
High—field solenoids or Lithium Lenses

@ Large L (low—Z absorber) : Liquid H;

Ionization cooling
using a wedge plu
dispersion.

Exchanges emitt—
ance between

transverse & long
itudinal directio

Cooling merit factor:
gg(init)/e4(final)

1. Neutrino source:
4-dimensional cooling

2. Muon collider: 6-
dimensional cooling

scale (m)

Bent Solenoid: drift
proportional to particle’s
momentum, introduces
dispersion, m
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» Shown here, a cooling cell with LH, Absorbers, RF cavities and

Solenoid Magnet:
> Issues:

LH2 safety, windows strong but thin, RF cavities “benign”, structural
in very large E and B fields

intregrity
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6.68 m D 619
Bending magnet m

45 deg,R=52cm
— Solenoid coils p 1.85 m |

BEFORE
:m:m<mﬁmm

pﬁ

» Provides same transverse
cooling as sFOFO linear
channel considered in neutrino
factory Study II.

P, (MeV/c)
o

—= Direct. of magnetic field
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» Heat dissipation in absorber
could be challenging
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» Injection and extraction is
difficult-no space
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J

Lattice cooling rings

se only convention quadrupole

and/or dipole magnets to contain
beam.

RF QF2

Quadrupole/dipole ring

QF1 QF1 QF2 RF

o ) p miyE G om
Absorber
Merit Factor=15
after 15 turns
B(m) uv\ D(m)
0 0.0
0 I 2 3
Path Length (m)

dipole only

45 degree cell

radius = 4.6m

circonf.= 28.8m

Dipale
44 deqg bend

201 MHz
RF Cavity Dipole

Half 22 deq beryd

! Lithium
Lens
Half

22.5 deg

Bam)

By

Merit Factor=80
after 15 turns

D(m)

0 1 2
Path Length (i)

Performance improves for more compact lattices-could be a problem for

injection/extraction




R ~ Alternating Solenoid Ring
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_‘ Injection/extraction
- Vertical kicker Solenoids flip polarity at the center
s = of a cell. All cells are identical.

Hn.u _ _ _ _

200 MHz rf
12MV/m

hydrogen S, |
— absorbers —

10
0 100 200 300 400 500
z (m)
~ = Bending generated by
tilted solenoids alternately tilting the
RF cavities _ H2 absorber | solenoids. Merit factor decreases by ~30%

after accounting for
injection/extraction.




Dark matter dominates the universe

Dark Energy controls its destiny ... UQ—.—A Cu —.—.m:._”m

Dark currents keep us from unveiling its secrets...
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Paschen’s Law
discharge between electrodes in gases is a
function of the product of pressure and distance.

v ﬂ\@\m&&os\: = ON_.N_.WS& + O@ V SQ

density n; pressure required
decreases with temperature

50 100150 200 250 un_vo
T T T I

isof T

120

AN ()]
o (@]
i

N

Gradient (MV/m)
w
S

(kV)

90

VS

60

Muon Collaboration
results (2003)

——  Felici (1948)
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Breakdown voltages in hydrogen (Miiller, 1966. Repr
permission of Springer-Verlag)

-—— Miiller (1966) o 1 T 1

O Félici and Marchal (1948)
o mo ANN AN ; [ ‘ ‘
> Suppresses breakdown, allowing higher gradients Pressure (PSI) < SE S SN
. . Draceciira { i =
> Absorbs dark current radiation

> Gas with high heat capacity cools RF windows and increases . ey,
electrical efficiency S

» Gas can even act as a homogeneous absorber to provide e ‘
ionization cooling! /1972002
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[Err ] PRELIMINARY CONCEPTUAL DESIGN

» Dense GH, suppresses high-voltage breakdown
inhibits avalanches (Paschen’s Law)

» No absorber windows necessary!

» Best for uniform solenoidal fields

Major challenge to the prevailing safety culture!
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To achieve the same cooling power : 09 * &&xv

for transverse cooling as in current LH2 cooling
channels requires a GH2 pressure above that
needed to suppress breakdown

6D Cooling Channel: a gas—filled cavity

in a solenoid plus transverse helical

dipole fields
u beam

wedge absorber

ransverse Looling
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» Derbenev channel: Solenoid plus transverse helical dipole fields

> Analytically see equal cooling decrements and 10° phase space
reduction in ~150 m channel with energy loss of 1/3

» Not a ring channel — avoids ring problems
1. Injection and Extraction simpler
2. No Multi-pass Beam loading or Absorber heating
3. Can adjust channel parameters as beam cools

|@_U

Yaroslav Derbenev

Thomas Jefferson National Accelerator Facility,
Newport News, VA 23606

Rolland P. Johnson Direct Wind Type
Muons, Inc., Batavia, IL 60510

Paper contributed to COOLO03 Meeting Hotel Fuiji, Japan
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» Hadron colliders have traditionally been the “discovery” machines, and the Tevatron
and LHC at this time, may be no exception.

» We don't have enough information to make a decision to commit to any ~ $10G
machine, and couldn’t build any if we did at this time.

» Accelerator and detector R & D is needed for all major proposed machines, and
breakthroughs in any of them help all of them.

» Muon colliders are the farthest reaching machines, but recent developments suggest
that it NOT necessarily the furthest away from being built at this time: both
statements support a strong R & D program.

V_uc::m::oqm, an early stage of the uC, the v factory, is a machine that may be
technically and financially feasible ~ next 10 years.

V>@@5mm_<m accelerator and detector R & D is the only way we move from a “story”
driven field to become a data driven field — and the muon collaboration is doing just

that: a strong group of accelerator and particle physicists, reversing a > 40 year
trend.



