Helicity of the W Boson in Lepton+Jets tt Events

Florencia Canelli

- Introduction
- The new approach for measuring top quark properties
- Monte Carlo tests with the new approach
- **F**₀ measurement using Run I DØ data
- Systematic uncertainties
- Conclusions

- 200 experiments of 12 *ttba*r ($F_0=0.7$) + 10 *W*+jets events
- Input F_0 is within 68.27% interval of the likelihood in 67% of the experiments
- reasonable definition for the uncertainty on ${\rm F}_{\rm 0}$
- Distributions show most probable F_0 , uncertainty in F_0 , and number of signal events

	Conclusions
*	The helicity of the W boson offers a way to learn about the decay coupling of the top quark
*	Using LO approximation and parameterized showering, we calculated the event probabilities, and measured: $F_0 (preliminary) = 0.56 \pm 0.31$
	First F ₀ measurement done at DØ using 22 events (~50% signal) CDF measurement using 108 leptons (~70% signal) 0.91 ± 0.39
*	This method was first applied to the re-measurement of the top quark mass, and now applied to measure angular distributions
*	We have a method that allows us to extract \mathbf{F}_{0} using the maximal information in the event:
	 Correct permutation is always considered (along with the other eleven) All features of individual events are included, thereby well measured events contribute more information than poorly measured events
	 This method offers the possibility of increasing the statistics using both W decay branches For higher statistics, one clearly needs to improve the calculation of the probabilities, but this method is a better way to do the analysis
	8, 2003 Florencia Canelli