Neutrino astronomy: Status And New Techniques

Thanks to: Peter Gorham, Francis Halzen, John Learned, Josh Meyers, David Saltzberg, Dave Seckel

- Optical Cherenkov Detection
- Radio Cherenkov Detection
- Acoustic, air showers, etc...
- Will focus on Effective Volume Comparison

some of the various active neutrino projects:

- under-water: ANTARES, Baikal, NEMO, and NESTOR, AUTEC (and more)
- under-ice: AMANDA, ICECUBE, RICE
- atmosphere: ASHRA, AUGER, EUSO, OWL
- salt: SALSA
- ground to air: GLUE, Forte', NuTel, ANITA

Planned, coming-on-line, taking data/setting limits

 Techniques: Optical & Radio Cherenkov radiation, N₂ Fluorescence, Thermoacoustic

Optical Cherenkov Neutrino Telescope Projects

Complementarity of Sky Coverage by Neutrino Telescopes

Gamma ray flux >100 MeV observed by EGRET

Region of sky seen in galactic co-ordinates assuming efficiency=100% for 2π downwards

J. Carr, Nu2002

Under Sea, Lake or Ice Neutrino Telescopes

ANTARES Prototype Connected March '03 1/12 strings deployed

NESTOR Project Pylos, Greece 3800m depth

NESTOR TOWER

~1991 Started 1992 Counted Muons '92-'01 Many ocean tests, build lab and insfrastructure 2000 Lay Cable to site 2001 Repair cable, 2003 Deploy 1-floor 2004 Full tower 200? Deployment of 7 NESTOR towers

Depth

AMANDA

Amanda-II: 677 PMTs at 19 strings (1996-2000)

AMANDA RESULTS

... are natural calibration tools

Much improved understanding over last 2 years: - better detector (Amanda-B10 → Amanda-II)

- better description of ice !

<u>Compare:</u>

- rate
- angular distribution
- energy spectrum

Two cases: a) upward muons (+ downward muons, for E>1 PeV) -Search for excess over atm. Nu MC b)Cascades (E-estimate possible here...) -Require E>Emin, count evts.

No signals found→Limits set

AMANDA B10,1997 data, upcoming mu

Cascade energy spectrum (2000 data)

Energy cut chosen by MC Optimization (see next slide) 2 events passed all cuts

Background	Expectation
Atmospheric muons	0.45 ^{+0.5} -0.3
Conventional atmospheric v	0.05 ^{+0.05} -0.02
Prompt charm v	0.015-0.7
Sum (w/o charm)	0.50 ^{+0.5} -0.3

Diffuse fluxes: theoretical bounds and experimental limits

IceCube

IceTop

1400 m

- 80 Strings
- 4800 PMTs
- Instrumented volume: 1 km³
- Installation: 2004 -2010

~ 80.000 atm.v per years 2400 m

HYPERCUBE:

AMANDA

South

Pole

Double # strings!

WWWww.com.uss.co

IceCube Effective Area

There is a spectre haunting optical.....

.it is the spirit of Radio.

Radio Emission From EM-Showers: IV

Power spectrum turns over at scale 1/R_{moliere} (transverse shower size); $R_{moliere} \sim 10 \text{ cm}$ Coherence $\rightarrow 1$ GHz

Signal characteristics ~ single-slit diffraction

EM Pulse Generation G4 simulations

- Pulse increases with frequency, (and, of course, energy).
- Narrows with frequency.
- Again, single-slit diffraction analogy.

Simulations verified in both E-field strength + polarization by SLAC testbeam experiments (2001-03)

RICE dipole radio antennas – $f_0 \sim 500$ MHz; $\lambda \sim 60$ cm.

Antennas are calibrated & stress-tested pre-deployment

Optical/Radio Comparison

Optical : Thru-going muonsbest in range up to 1 PeV

 Ice transparency allows detection at R~km

♦ Energies~ >PeV

RICE (PeV-EeV) (in situ)

- 20-channel array, co-deployed with AMANDA, Rx at -200 m
- RICE Calibration (Astropart. Phys.02)
- RICE Results (Astropart. Phys03 + ICRC03)

ANITA/GLUE/FORTE (in-air)

- •GLUE/FORTE use pre-existing data/facilities;
- •ANITA test flight in 2003-04 / 15-day flight 2006/7

Radio Technique: **RICE** CALIBRATION BENCHMARKS

- Demonstrate vertex reconstruction

 Use pulse-edge from buried radio transmitters
- Demonstrate understanding of time domain (and frequency domain) waveform shape
 Use signal shape from transmitters
- Overall absolute gain calibration

 Calibrate to transmitter amplitude

Transmitter Location Reconstruction

Glaciology - Index of refraction measurement as f(depth) (2003) Drop transmitter into a hole; broadcast to RICE, measure c(z)

RICE $Tx \rightarrow Rx$ waveform sim. vs. data

Still need to add filter phase delay in passband

Calculation of RICE Effective Volume (2 different MC's)

AMANDA Effective Volume: ν_{e},ν_{μ} and ν_{τ}

RICE ICRC03 diffuse flux limit

Thin lines= Models Thick lines= Exptl. UL's

TBD: GRB, monopole, BH-analyses. Diffuse flux through 2003

Future: 2004-10: Plan co-deploy with ICE3

1.5x per-channel sensitivity;

50x gain in channels

Antarctic Impulsive Transient Antenna (ANITA)

• ANITA Goal: Pathfinding mission for GZK U. Of Hawaii, UC Irvine, UCLA, Bartol Research Institute, U. of Wisconsin, Penn State U., U. of Minnesota, Cal Tech, KU, JPL

ANITA concept

Estimate Effective Volume: 3x10⁶ km³ x (.01) aperture=> 10⁴ km3

Goldstone Lunar Ultra-high energy neutrino Experiment (GLUE)

[Similar activity in Russia]

- Utilize NASA Deep Space telecom 70m antenna DSS14 for lunar RF pulse search--fill gaps in SC sched.
- First observations late 1998:
 - approach based on Hankins et al. 1996 results from Parkes 64 m telescope (10hrs live)
 - idea due to I. Zheleznykh, Neutrino `88
 - utilize active RFI veto
- Preliminary data taken 1999 through present, with continuing improvements in configuration and sensitivity.
- First results and limits available.

Lunar Regolith Interactions & RF Cherenkov radiation

• At ~100 EeV energies, neutrino MFP in lunar material is ~60km.

 \cdot R_{moon} ~ 1760 km, so most detectable interactions are grazing rays, but detection not limited to just limb.

• Refraction of Cherenkov cone at regolith surface "fills in" the pattern, so acceptance solid angle is ~50 times larger than apparent solid angle of moon.

FORTE:

An <u>Existing</u> Space-based EHE Neutrino & Cosmic Ray Radio Detector?

Fast On-orbit Radio Transient Expt.

- Pegasus launch in 1997
 - 800 km orbit, 3 year planned life
 - Testbed for non-proliferation & verification sensing
 - Dept. of Energy funded, LANL & Sandia construction & operation
 - Scientific program in lightning & related atmospheric discharges
- 30-300MHz range, dual 20 MHz bands,
- 16 1MHz trigger channels
 - ~2M triggers recorded to date
- FORTE can trigger on radio emission from Giant air showers E~100 EeV
- Preliminary estimates: could be ~50-100
 100 EeV cosmic ray events in sample

FORTE/GLUE/RICE02

Forte has collected RF data in scan of Greenland ice; convert non-observation of signals into UL on neutrino flux.

Nu astronomy active in Antarctica!

Other Possibilities

- Acoustic detection of compressional wave produced by shower in water→BURY hydrophones
- Under investigation by Gratta et al., Caribbean site

Neutrino Noises are Weak, but 10²¹ eV v's can be Heard from Afar

G. Gratta astro-ph/0104033

Shower Heating \rightarrow Expansion \rightarrow Bipolar Pressure Pulse

Acoustic Pulse Attenuation of order 1 dB/km Lower a light bulb into water until it implodes and measure acoustic signal in hydrophones!

Release~1PeV energy

Radio Detection in Natural Salt Domes

• Natural salt can be extremely low RF loss: ~ as clear as very cold ice, but nearly 2.5 times as dense.

• Typical salt dome halite is comparable to ice at -40C for RF clarity.

SALT curves are for (top): purest natural salt; (middle): typical good salt dome; (bottom) best salt bed halite. New measurements 2001, SLAC 2002.

Hockley Mine Prototype

Many available salt domes In Southwest USA

- Cluster of 4-6 antennas, with trigger & DAQ
 - Insert into shallow boreholes within mine, ~40 m separation
 - Measure background noise levels, HE muons?
 - Effective volume ~1 cubic km water equivalent at 1 EeV
- Deploy in mine for 6-12 months, target date late 2003-2004
 - Existing seismic system (UT Austin) could provide fiber link to surface
- Testbed for a GZK neutrino detector!
- Emphasis on simplicity, scalability, low cost

All Experiments Built to Explore GZK Anomaly are also v Telescopes

- Limits from Fly's Eye, AGASA, Hi-Res ...
- Better limits will come from ground (Auger) and space (EUSO/OWL/....)
- Area large, solid angle is small; but may measure
 GZK Neutrinos

• Plus see neutrinos exiting ground?

J. Krizmanic

Auger and UHE neutrinos

Sensitive to horizontal air showers: $\sim 10^4$ gm/cm² $V_{eff} \sim 40$ km³ at 10^{19} eV.

Best sensitivity to tau neutrinos interacting nearby (regeneration) –

Expect competitive

NuTel: Tau Watch in Hawaii Neutrinos Converted in Mountain

- Astronomer's dream site
 - Excellent weather
 - Little artificial light
- 3km Mt. Hualalai provides good view of Mauna Loa.
- Mauna Loa provide long base line, ~ 90 km wide and 4 km high.

3/02 Workshop in Taiwan, 8/02 HI, 1/03 Italy see http://hep1.phys.ntu.edu.tw/vhetnw

New Project Combining Air Cherenkov and Fluorescence Detection • ASHRA station

• 3 stations in Hawaii (phase2)

12 telescopes / station

• All-sky (2• sr) / 80M pixels

\$0.04/pixel

M. Sasaki U. Tokyo ICRR

Test Telescope on Haleakala in '03

Some Projected Yields

NB: RICE numbers based on 16-channel array only

		Nevents			
		Top. Def. GZK		WB	
Telescope	Duration	(PS)	(min)	(max)	
Anita	45 live days	78	8.5	31	12
Amanda B10	130 live days	-	-	-	0.12
Auger	3 live years	1.2	1.8	5.3	1.8
EAS-TOP	326 live days	-	-	-	-
Euso	2.7 live years	18	0.9	3.6	1.9
Glue	80 hours	0.20	-	0.020	-
Ice Cube	3 live years	2.0	0.9	2.4	501
Macro	5.8 live years	-	-	-	0.036
Rice	2.5 live years	8.7	2.3	7.4	3.1
Salsa-1000	2 live years	60	69	232	67

Summary

- <1 PeV exclusive domain of optical Cherenkov (ANTARES/AMANDA/NESTOR/ICE3)
 - AMANDA has reconstructed ~ 10^3 atmospheric v_{μ}
 - However, must statistically separate AGN ν_{μ} from atmospheric ν_{μ} for E<1 PeV
- Radio>Optical V_{eff} for E>1 PeV (ice, salt)
 - "coherence" + long-attenuation length
 - Per-\$ Radio advantage grows ~linearly with E
 - Atmospheric neutrino background $\rightarrow 0$
 - Air shower backgrounds currently under study
 - RICE preliminary study=>comparable to signal neutrino flux
 - Radio detection of air showers (LOFAR) under study
- >1 EeV: Auger/Forte get neutrinos "for free"
 - Acoustic may be competitive (no LPM)

Experiment operations

- The ANITA floats above Antarctica at altitude of \sim 37 km observes an instantaneous ice volume of \sim 1 M km³
 - aperture ~3000 km³ sr (water equivalent)

- flights last ~10 days duty cycle~ 100%
- depending on the source models used, ANITA may observe 10-100 nu per flight

Expected performance

Parameter	Description	Estimated value
θ reconstruction	event nadir angle	~ 2° at θ ~ 85°
$_{\phi}$ reconstruction	azimuth using amplitude ratio	< 12 ⁰
track reconstruction	based on polarization plane	~10° error box
fractional range resolution	near the horizon	< 50 %
energy uncertainty	measured field is lower limit	$\Delta E/E \sim 1$
effective aperture at 3x10 ¹⁸ eV	volumetric aperture	1260 km ³ sr
expected trigger rate	Thermal noise triggers	< 0.01 Hz
event (data) size	288 total channels/event	~ 30 Kbyte
maximum archive size	10 times expected trig rate	8 Gbyte

Correlations w/ Gamma Ray Bursts (BATSE)?

Caution: Gamma Ray studies can be dangerous

The second
North Contraction

1969

- Low background (due narrow time and space coincidence)

$\frac{-1 \text{ hour}}{10 \text{ sec}} + 1 \text{ hour}$ BG from off-time BG from off-time t=0GRB trigger time (T90)

Year	# of	Bkgd	seen
	GRB		events
1997	78	0.06	0
1998	99	0.20	0
1999	96	0.20	0
2000	44	0.40	0
Total	218	0.86	0

- Large effective areas

Water Optical Cerenkov Detection

- Lake Baikal: ~100 atmospheric nu, plan expansion
- ANTARES: 1/12 strings deployed in Mediterranean
 - Full deployment $2006 km^2 V_{eff}$
 - Angular resolution ~0.5 degree! Water: attenuation limited

ANITA questions & issues

Energy & Angular resolution?

- Pulse interferometry & beam gradiometry → ~5-10⁰
- Depth of cascade from spectral rolloff & known ice properties
- Track angle from plane of polarization
- Surface refraction effects?
- RF interference? RICE: Antarctica quiet
- Uniformity of temperature, attenuation length profiles?

Antarctic ice topography

~few m feature relief

~5 mile long "highway"

- RadarSat completed comprehensive SAR map of Antarctica in late 1990s—feature resolutions of ~10-50m, available public domain
- Calibrate surface roughness—SAR $\lambda = 5.6$ cm

ANITA Payload

- ANITA antennas view ~2pi sr / 60 deg overlapping beams
- Beam intensity gradiometry, interferometry, polarimetry used to determine pulse direction & thus original neutrino track orientation

Goldstone DSN Radio Detection Approach

P. Gorham

RF pulse spectrum & shape

- Effective target volume: antenna beam (~0.3 deg) times ~10 m layer
 => ~100,000 cubic km !
- Limited primarily by livetime small portion of antenna time devoted to any single project.

Goldstone diffuse EHE neutrino flux limits

- ~30 hrs livetime
 - No events above net 5 sigma
- New Monte Carlo estimates:
 - cross-sections 'down' by 30-40%
 - Full refraction raytrace, including surface roughness, regolith absorption
 - Y-distribution, LPM included

Limb observations:

- lower threshold, but much less effective volume (factor of ~1/10)
- 'Weaker' limit but with more confidence
- Fly's Eye limit: needs update:
 - Corrected (PG) by using published CR aperture, new neutrino cross sections.

P. Gorham

ANTARES Detector

Shower Simulations

- Shower simulation
 - Now GEANT 4 (100 GeV 1 TeV)

10% smaller than ZHS (but ... tracklength? Power spectrum?)

- Extrapolate to higher energies
- LPM from Alvarez & Zas
- Hadronic cascades convert
 completely to EM with no
 LPM
- EM & hadronic cascades
 treated separately, in progress

Simulations verified in both E-field strength + polarization by SLAC testbeam experiments (2001-03)

Angular Resolution simulation

