Radiative and Electroweak *B* **Decays**

Shohei Nishida

KEK

Belle Collaboration

Oct 8, 2003

19th International Workshop on Weak Interactions and Neutrinos

Oct 8, 2003 WIN03

Radiative and Electroweak *B* **Decays** (page 1)

Contents

Contents

- Introduction
- Radiative B decays
 - Exclusive modes (new $B \rightarrow K_2^*(1430)\gamma$ from BaBar)
 - $A_{\rm CP}(B \to X_s \gamma)$ from Belle
- Electroweak ${\cal B}$ decays
 - $B \to K \ell^+ \ell^-$, $B \to K^* \ell^+ \ell^-$
 - Inclusive $B \to X_s \ell^+ \ell^-$
- Summary

The experimental results are from BaBar and Belle. Special thanks to Jeff Richman and Jeff Berryhill (BaBar).

Introduction

Introduction

- $b \to s\gamma \ (b \to d\gamma)$ and $b \to s\ell^+\ell^-$: FCNC process
- Lowest diagram: one loop penguin (or box) diagram.
- Sensitive probe to New Physics.

The effective Hamiltonian in terms of Wilson coefficients C_i :

$$\mathcal{H}^{\text{eff}} = -\frac{4G_F}{\sqrt{2}} |V_{ts}^* V_{tb}| \sum_{i=1}^8 C_i(\mu) O_i(\mu).$$

•
$$b \to s\gamma$$
 : $|C_7|$

• $b \rightarrow s\ell^+\ell^-$: C_9 , C_{10} , sign of C_7

 $b \rightarrow d\gamma$ not covered this talk (no update this summer). Best upper limit by BaBar:

$$\begin{aligned} \mathcal{B}(B^+ \to \rho^+ \gamma) &< 2.1 \times 10^{-6} \quad [\text{SM:} \sim 1 \times 10^{-6}] \\ \mathcal{B}(B^0 \to \rho^0 \gamma) &< 1.2 \times 10^{-6} \quad [\text{SM:} \sim 0.5 \times 10^{-6}] \\ \mathcal{B}(B^0 \to \omega \gamma) &< 1.0 \times 10^{-6} \quad [\text{SM:} \sim 0.5 \times 10^{-6}] \end{aligned}$$

s (d) b t W b t S W b S

W

Oct 8, 2003 WIN03

Radiative and Electroweak *B* **Decays** (page 3)

Radiative B Decays

Radiative B Decays

Inclusive $b \rightarrow s\gamma$ Branching Fraction

- Both theoretical predictions and experimental measurements have $\sim 10\%$ uncertainty.
- Measurements are consistent with the SM expectation.

Oct 8, 2003 WIN03

Radiative and Electroweak *B* **Decays** (page 4)

Radiative B Decays

Interests in radiative ${\cal B}$ decays

- Inclusive branching fraction.
- ★ Direct *CP* asymmetry in $b \rightarrow s\gamma$.
- Photon polarization (left-handed in the SM).
 - $B \to K^* \gamma \to K^* e^+ e^-$ (conversion at beam pipe etc).
 - $B^+ \to K_1(1400)^+ \gamma$
- Mixed induced *CP* asymmetry.
 - $B^0 \to K^{*0} \gamma \to K^0_S \pi^0 \gamma$
 - $B^0 \to K_1(1270)^0 \gamma \to K^0_S \rho^0 \gamma$
- E_{γ}^* spectrum (for $|V_{ub}|$ measurement).
- ★ Exclusive decays $(B \rightarrow K_2^*(1430)\gamma$ etc).

 \bigstar : topic in this talk

Exclusive modes of radiative B decays

 $B \to K^*(892)\gamma$

- $\sim 15\%$ of the $b \to s \gamma$ process.
- Difficult theoretical prediction due to the form factor
- Asymmetry of BF in charged and neutral mode \implies consistent with zero.
- $A_{\rm CP}(K^*\gamma) = (-0.5 \pm 3.7)\%$ (averaged).

Oct 8, 2003 WIN03

 $\underline{B \to K_2^*(1430)\gamma}$

- CLEO, Belle observed $B \to K_2^*(1430)\gamma$.
- New result from BaBar!!

- $K_2^*(1430) \to K\pi \ (50\%)$
- Helicity angle distribution: $\cos^2 \theta_{\rm H} - \cos^4 \theta_{\rm H}$

- Separately for the neutral mode and charged mode.
- Maximum likelihood fit for $m_{\rm ES}$, ΔE , $\cos \theta_{\rm H}$

Oct 8, 2003 WIN03

Radiative and Electroweak *B* **Decays** (page 7)

Oct 8, 2003 WIN03

Radiative and Electroweak *B* **Decays** (page 9)

$A_{\rm CP}(B \to X_s \gamma)$

$A_{\rm CP}(B\to X_s\gamma)$

- SM predicts small *CP* asymmetry (less than 0.6%) in the $b \rightarrow s\gamma$ process. Large *CP* asymmetry (~ 40%) is possible for the $b \rightarrow d\gamma$ process.
- Some models beyond the SM allow large *CP* asymmetry.
- Past measurement by CLEO [PRL86, 5661 (2001)]:

$$A_{\rm CP} \equiv 0.965 A_{\rm CP} (B \to X_s \gamma) + 0.02 A_{\rm CP} (B \to X_d \gamma)$$

= $(-0.079 \pm 0.108 \pm 0.022)(1.0 \pm 0.030)$
 $-0.27 < A_{\rm CP} < 0.10$ (90% C.L.)

Model	$A_{\rm CP}(b \to s\gamma)[\%]$	
SM	0.6	
2HDM	~ 0.6	
Supergravity	~ -10 to 10	
SUSY with squark mixing	~ -15 to 15	[K.Kiers et al.
SUSY with <i>R</i> -parity violation	~ -17 to 17	PRD62, 116004 (2000)]

$A_{\rm CP}(B \to X_s \gamma)$

New measurement by Belle

- Pseudo-reconstruction of X_s $K^+ (K_S^0) + 1 \sim 4 \pi \text{ (up to 1 } \pi^0)$ $K^+K^-K^+(\pi^-) / K_S^0K^+K^-(\pi^+)$
- $M(X_s) < 2.1 \text{ GeV}/c^2 \ (\sim E_{\gamma} > 2.2 \text{ GeV})$
- High energy lepton from the other side B is required in order to suppress $q\bar{q}$ background.
- $b \rightarrow d\gamma$ contamination is negligible.
- Signal yield by fitting $M_{\rm bc}$ to signal, $q\bar{q}$ and $B\bar{B}$ (fixed) components.

 $A_{\rm CP}(B \to X_s \gamma)$

 $B \rightarrow X_s \gamma$ final states.

 322 ± 24 events 160 ± 17 events

 $A_{\rm CP}(B \to X_s \gamma)$

Flavor tagging

- Charged *B* or odd number of $K \Longrightarrow$ self-tag - e.g. $K^+\pi^-\pi^+\pi^-\gamma$, $K^0_S\pi^+\pi^0\gamma$
- Neutral B and even number of $K \Longrightarrow$ ambiguous
 - e.g. $K^0_S \pi^+\pi^-\gamma$

$$A_{\rm CP} = DA_{\rm CP}^{\rm raw} = \frac{1 - w_2 - w_3}{(1 - w_2)(1 - 2w_1 - w_2)} \frac{N(b) - N(b)}{N(b) + N(\bar{b}) - (w_2/(1 - w_2))N({\sf amb.})},$$

Wrong tag fraction:

$$w_1 = 0.019 \pm 0.014 \qquad \overline{b} \Leftrightarrow b$$

$$w_2 = 0.24 \pm 0.19 \qquad \text{ambiguous} \Rightarrow \text{self-tag}$$

$$w_3 = 0.0075 \pm 0.0079 \qquad \text{self-tag} \Rightarrow \text{ambiguous}$$

$$D = 1.038 \pm 0.031$$

 $A_{\rm CP}(B \to X_s \gamma)$

 $A_{\rm CP}(B \to X_s \gamma; M(X_s) < 2.1 \text{ GeV}/c^2) = -0.004 \pm 0.051 \text{(stat.)} \pm 0.038 \text{(syst.)} - 0.107 < A_{\rm CP}(B \to X_s \gamma; M(X_s) < 2.1 \text{ GeV}/c^2) < 0.099 \quad (90\% \text{ CL})$

- Null asymmetry.
- Can be used to constrain new physics model (e.g. light chargino in MSSM).

 $B \to K \ell^+ \ell^-$, $K^* \ell^+ \ell^-$

 $B \to K \ell^+ \ell^-$, $K^* \ell^+ \ell^-$

- Belle observed $B \to K \ell^+ \ell^-$ in 2001 with 29 fb⁻¹.
- Access to C_9 , C_{10} .
- Forward-backward asymmetry in $B \to K^* \ell^+ \ell^- \Longrightarrow$ sign of C_7

Analysis

- Hadronic system: K^+ , K_S , K^* (from $K^+\pi^-, K_S\pi^+, [K^+\pi^0]$)
- Background
 - Continuum $q\bar{q}$ events.
 - $B\overline{B}$ events (semi-leptonic decays) \implies missing energy.
 - $B \rightarrow K^{(*)}hh \Longrightarrow$ signal-like peak.
- J/ψ , ψ' veto

 $B \to K \ell^+ \ell^-$, $K^* \ell^+ \ell^-$

 $B \to K^{(*)} \ell^+ \ell^-$ from Belle

(a) K^{*} e⁺e⁻ (b) K e⁺e⁻ • Signal yield from $M_{\rm bc}$ fit. 3.5σ 4.5σ • First Observation of $B \to K^* \ell^+ \ell^-$ mode!! 10 (a) $K^*e^+e^-$ (b) $Ke^+e^$ yield $15.6^{+5.5}_{-4.8} \pm 1.0$ $15.9^{+5.1}_{-4.4} \pm 0.7$ eff. [%] $3.5 \pm 0.2 \pm 0.1$ $10.8 \pm 0.5 \pm 0.2$ (c) $K^*\mu^+\mu^-$ (d) $K\mu^+\mu^-$ (d) K $\mu^{+}\mu^{-}$ (c) $K^* \mu^+ \mu^$ yield $20.0 + 6.0 + 1.1 = 22.0 + 5.8 \pm 0.8$ 4.2σ 5.6σ eff. [%] $5.6 \pm 0.3 \pm 0.3$ $15.2 \pm 0.7 \pm 0.5$ (e) $K^* \ell^+ \ell^-$ (f) $K \ell^+ \ell^$ yield $35.8^{+8.0}_{-7.3} \pm 1.7$ $37.9^{+7.6}_{-6.9} \pm 1.1$ eff. [%] $5.1 \pm 0.3 \pm 0.2$ $13.0 \pm 0.6 \pm 0.2$ 0 (e) K^{*} I⁺I⁻ (f) K I⁺I⁻ 20 5.7σ events / 2.5 MeV/c² 8 01 7 11 7.4σ $(b)_{\Pi}K^{*}e\mu$ (a) K e µ 15 10 5 5.25 5.2 5.25 5.22 5.24 5.26 5.28 5.2 5.22 5.24 5.26 5.3 5.28 5.3 M_{hc} (GeV/c²) GeV/c² GeV/c²

Oct 8, 2003 WIN03

Radiative and Electroweak *B* **Decays** (page 16)

Shohei Nishida KEK

5.3

 $B \to K \ell^+ \ell^-$, $K^* \ell^+ \ell^-$

 $B \to K^{(*)} \ell^+ \ell^-$ from BaBar

- Simultaneous fit to $m_{\rm ES}$, ΔE , $(m(K\pi))$.
- Evidence for $B \to K^* \ell^+ \ell^-$.

Oct 8, 2003 WIN03

Radiative and Electroweak *B* **Decays** (page 17)

 $B \to K \ell^+ \ell^-$, $K^* \ell^+ \ell^-$

 $B \to K^{(*)}\ell^+\ell^-$ result

Branching	fraction ($(\times 10^{-7})$)
-----------	------------	--------------------	---

Mode	Belle	BaBar	SM
$B \to K e^+ e^-$	$4.8^{+1.5}_{-1.3} \pm 0.3 \pm 0.1$	$7.4^{+1.8}_{-1.6} \pm 0.5$	
$B \to K \mu^+ \mu^-$	$4.8^{+1.2}_{-1.1}\pm0.3\pm0.2$	$4.5^{+2.3}_{-1.9} \pm 0.4$	
$B \to K \ell^+ \ell^-$	$4.8^{+1.0}_{-0.9}\pm0.3\pm0.1$	$6.5^{+1.4}_{-1.3}\pm0.4$	3.5 ± 1.2
$B \to K^* e^+ e^-$	$14.9^{+5.2+1.2}_{-4.6-1.3} \pm 0.2$	$9.8^{+5.0}_{-4.2} \pm 1.1$	
$B \to K^* \mu^+ \mu^-$	$11.7^{+3.6}_{-3.1}\pm0.9\pm0.5$	$12.7^{+7.6}_{-6.1} \pm 1.6$	
$B \to K^* \ell^+ \ell^-$	$11.5^{+2.6}_{-2.4} \pm 0.8 \pm 0.2$	$8.8^{+3.3}_{-2.9}\pm1.0$	11.9 ± 3.9

- $\mathcal{B}(B \to K^* \ell^+ \ell^-) \equiv \mathcal{B}(B \to K^* \mu^+ \mu^-) = 0.75 \mathcal{B}(B \to K^* e^+ e^-)$ is assumed to compensate $q^2 = 0$ pole in $e^+ e^-$. [A.Ali et al. PRD 66, 034002 (2002)]
- BaBar assumes B(B⁰ → K⁰ℓ⁺ℓ⁻)/B(B⁺ → K⁺ℓ⁺ℓ⁻) to be 1.085 ± 0.017, while Belle assumes to be 1.0 (similarly for K^{*}ℓ⁺ℓ⁻).
- First observation/evidence for $B \to K^* \ell^+ \ell^-$.

Submitted to PRL (BaBar: hep-ex/0308042, Belle: hep-ex/0308044)

Radiative and Electroweak *B* **Decays** (page 18)

 $B \to K \ell^+ \ell^-$, $K^* \ell^+ \ell^-$

 $M(\ell^+\ell^-)$ distribution

- M(l+l-) distribution might be useful to obtain information of New Physics.
- Need more statistics to compare the data and the SM prediction.

Forward-backward asymmetry in $K^*\ell^+\ell^-$, charge asymmetry etc. should be studied with more data.

Oct 8, 2003 WIN03 $B \to X_s \ell^+ \ell^-$

$$B \to X_s \ell^+ \ell^-$$

Inclusive $B \to X_s \ell^+ \ell^-$

- Smaller theoretical uncertainties than exclusive modes.
- Measurements are more difficult.
- Belle measured the inclusive branching fraction last year using 60 fb⁻¹ data [PRL 90, 021801 (2003)].
- New result from BaBar using 80 fb^{-1} data!! [hep-ex/0308016]

Analysis (by BaBar [Belle])

• X_s is reconstructed from 1 kaon + 0 ~ 2 π [Belle: 0 ~ 4 π], where up to 1 π^0 is allowed.

 $\implies \sim 75\%$ [Belle: 82%] of signals are covered.

- $M(X_s) < 1.8 \text{ GeV}$ [Belle: $M(X_s) < 2.1 \text{ GeV}$]
- Similar selection criteria as exclusive modes.
- $M(\ell^+\ell^-) > 0.2$ GeV.

 $B \to X_s \ell^+ \ell^-$

BaBar result (New!!) (80 fb^{-1})

Belle result (60 fb^{-1})

Oct 8, 2003 WIN03

Radiative and Electroweak *B* **Decays** (page 21)

 $B \to X_s \ell^+ \ell^-$

BaBar

- Consistent with the S.M. \bullet
- Need more data.

 $b \rightarrow s \ell^+ \ell^-$ summary

Summary

Summary

Radiative ${\cal B}$ decays

- Many studies on exclusive $b \rightarrow s\gamma$ mode.
- $A_{\rm CP}(B \rightarrow X_s \gamma)$: consistent null asymmetry.

${\sf Electroweak}\ B\ {\sf decays}$

- First observation of $B \to K^* \ell^+ \ell^-$.
- Updated results on $B \to K \ell^+ \ell^-$.
- Measurement of inclusive $B \to X_s \ell^+ \ell^-$ branching fraction.

So far, all the results look consistent with the SM expectation.

 $b \to s\gamma$ and $b \to s\ell^+\ell^-$ are still important probes to the physics beyond the SM.

- $A_{\rm CP}$, photon helicity in $b \rightarrow s\gamma$.
- $b \rightarrow d\gamma$.
- B.F., forward-backward asymmetry in $b \rightarrow s \ell^+ \ell^-$.

Still many programs! Awaiting more data (and more precise calculation).

Oct 8, 2003 WIN03

Radiative and Electroweak *B* **Decays** (page 24)