Charm Physics at the Tevatron

Kai Yi

Johns Hopkins University

(For the CDF and D0 collaborations)

Weak Interactions and Neutrinos Workshop - 2003

Lake Geneva, Wisconsin

October 8, 2003

Outline

- The Tevatron
- The CDF and D0 Detectors
- Triggers for B/Charm
 - Silicon Vertex Tracker (SVT)
 - Triggers at D0 and CDF
- Cross Sections
 - J/ψ Cross Section
 - Direct Charm Cross Section

- CP Violation in D's
- Rare Decay: Search for FCNC
- Spectroscopy
 - χ_c Observation
 - Exotic D_s search
 - Confirmation of X(3872)
- Outlook

The Tevatron

- # of bunches increased: 6X6(3500 ns) to 36X36(396ns)
- Peak Luminosity:
 - 0.16 x $10^{32} \ cm^{-2} s^{-1}$ (Run I)
 - $0.8 \times 10^{32} \ cm^{-2} s^{-1}$ (Run II) by 2005
 - (Record: 0.52) (Run II)
 - 2-4 x $10^{32} cm^{-2} s^{-1}$ (before LHC)
- Int. Luminosity:
 - \sim 2 fb $^{-1}$ by 2005 (Run II)
 - 330 pb^{-1} delivered
 - 220 pb⁻¹ to tape
 - 6-9 fb⁻¹ before LHC (Run II)

The CDF and D0 Detectors

- Both Detectors
 - silicon vertex detector (New for D0)
 - solenoid (New for D0)
 - central tracking
 - high rate trigger/DAQ system
 - calorimeter & muon systems

- D0 Detector
 - Excellent electron & muon ID
 - Excellent track acceptance
- CDF Detector
 - Silicon vertex trigger
 - Particle ID (TOF and dE/dx)
 - Excellent mass resolution

Triggers: Revolutionary Silicon Vertex Tracker(SVT)

- Never had hadronic B trigger at Hadron collider (challenging background, high rate)
- Seeded by L1 drift chamber trigger tracks, VME boards find & fit in a 15 μs pipeline, with offline accuracy.
- Significantly reduce L2 trigger rate

- Increase physics sensitivity
 - CDF as "Charm Factory"
 - Hadronic B trigger. $B \rightarrow hh$, $B_s \rightarrow D_s \pi$
 - Higgs/new particles decaying into b/c quarks

The D0 Silicon Track Trigger

• D0 Track Fit card

- Fully built
- In the final commissioning states
- Expect to take data shortly after the shutdown

Triggers for B/Charm Physics

- D0 Di-muon-Trigger
 - $J/\psi \rightarrow \mu\mu$
 - Two μ ($|\eta| < 2$)
 - $p_T>2-4$ GeV, η dependent

- CDF Di-muon-Trigger
 - $J/\psi \rightarrow \mu\mu$
 - Two central μ ($|\eta| < 1.0$)
 - $p_T > 1.5 \text{ GeV}$

Triggers for B/Charm Physics

- CDF Two-Track-Trigger(TTT)
 - Hadronic Decays
 - two displaced tracks
 - $p_T > 2 \text{ GeV}, d_0 > 100 \mu m$
 - $\Sigma p_T > 5.5 \text{ GeV}$
- Large sample: D^0 , D_s , D^* ...

Cross Section: Introduction and D0 J/ψ Cross Section

Introduction:

- Run I meas., Orders of magnitude larger than Color singlet
- New ingredients from theorists
 - Gluon fragmentation important
 - Color octet contribution important...
 - Agree better than 50%
- D0 J/ψ $|\eta|$ reach of 1.8, σ vs J/ψ $|\eta|$
- CDF $p_T(J/\psi)$ down to 0, σ vs J/ψ p_T
- D0+CDF: Whole picture!

- Dimuon triggers, 4.7 pb^{-1} of data
- Two p_T ranges
- $\bullet~\sim$ Overall 30% systematic uncertainty
- Agree with D0 Run I and CDF Run I

Cross Section: CDF and D0 J/ψ Cross Section

- di-muon trigger, 39.7 pb^{-1} of data
- cover whole $J/\psi \ p_T$ range
- Total and diff. incl. cross section (nb) $\sigma(p\bar{p} \rightarrow J/\psi, |y| < 0.6) * Br(J/\psi \rightarrow \mu\mu) = 240 \pm 1 \pm 30$

• σ includes direct, feed down, B decays

• For
$$p_T > 5$$
 GeV, similar to Run I

 $\sigma = 20.8 \pm 0.4 \pm ^{+3.1}_{-3.5}$, Run II $\sigma = 17.4 \pm 0.1 \pm ^{+2.6}_{-2.8}$, Run I

- "Lifetime" distribution to extract B fraction (See Petros's talk)
- prospective measurements(D0+CDF):
 - $\psi(2s)$ cleaner(prompt/secondary)
 - high p_T , $p_T^2 >> m^2$ theoretically reliable
 - polarization, high p_T –Run I discrepancy
 - $\Upsilon(1S,2S,3S)$ Cross section/polarization
 - χ_c Cross section

Cross Section: CDF Charm Cross Section

- two track trigger- charm "factory".
- direct or from b decay

• direct fraction from impact parameter

Cross Section: CDF Charm Cross Section

- $\sigma(D^+, p_T > 6 \text{GeV}) = 4.3 \pm 0.1 \pm 0.7 \mu b$
- $\sigma(D_s^+, p_T > 8 \text{GeV}) = 0.75 \pm 0.05 \pm 0.22 \mu b$
- Measurements higher than FONLL prediction by M. Cacciari, P. Nason. JHEP 0309, 006(2003)
- Agree within uncertainties

CP violation: CDF Cabbibo suppressed D decay

- CPV asy. for $D^0 \to KK(\pi\pi)$
- Tag-soft π , $D^{*+} \rightarrow D^0 \pi^+$, $D^{*-} \rightarrow \bar{D^0} \pi^-$
- correction-intrinsic detector charge asymmetry

• $\mathcal{A}(D^0 \to \pi\pi) = 3.0 \pm 1.9 \pm 0.6\%, \ 0.5 \pm 1.6\%$ (PDG)

Rare Decay: FCNC $D^0 \rightarrow \mu \mu$

• BR $(D^0 \rightarrow \mu^+ \mu^-) \simeq 3 \times 10^{-13}$ (SM)

Spectroscopy: observation of χ_c states

• D0 χ_c states via conversion: DØ Run II Preliminary

- Interesting physics: BR, Cross Section
- di-muon trigger, 114 pb^{-1}
- J/ψ mass window 200 MeV
- γ recon through conversion- e^+e^- pairs
- $p_T(\gamma) > 1 \text{ GeV}$

• CDF χ_c states via calorimeter:

- Interesting physics: Cross Section
- di-muon trigger, 46 pb^{-1}
- $p_T(\mu) > 2$ GeV, J/ψ mass window 80 MeV
- $E_T(\gamma) > 1$ GeV, γ through calorimeter
- $\sigma(B \rightarrow \chi_c X)$ study in progress

Spectroscopy: Search for Exotics

- $D^*_{s,I}(2317)^+ \to D^+_s \pi^0$ (BaBar, Apr.) :
 - Mass not match expectation for nomal D_s^{**} Models wrong or something else?

• $D_{s,J}(2463)^+ \to D_s^{*+}\pi^0$ (CLEO) :

- CDF Search through $D_s^+\pi^-$, $D_s^+\pi^+\pi^-$:
 - If exotic, may have analog states like $D_s^+\pi^-$

• No Signal Seen in $D_s^+\pi^-$, $D_s^+\pi^+\pi^-$: - $D_s \pi^+ \pi^-$ allowed if 1⁺; forbidden if 0⁺ - if $D_{s,I}^*(2317)$ is the lightest D_s^{**}

Spectroscopy: Confirmation of new 3872 state to $J/\psi\pi^+\pi^-$

- New narrow state Belle (Aug. 10)
- Using exclusive $B^+ \rightarrow J/\dot{\psi}\pi^+\pi^-K^+$
- A new Charmonium? or something else?

- First Confirmation of Belle's result
- Info. on production mechanisms
- ~2M J/ψ (220 pb^{-1}) at CDF
- Challenging combin. background
- Use inclusive $J/\psi \pi^+\pi^- X$
- CDF Strategies:
 - minimum p_T 's
 - good silicon tracks
 - only tracks in fixed cone

– optimize
$$\psi(2s)
ightarrow J/\psi \pi^+\pi^-$$

Spectroscopy: Confirmation of new 3872 state to $J/\psi\pi^+\pi^-$

- \sim 600 candidates around 3870 MeV
- Width fixed from $\psi(2S)$ extrapolation
- $M(\pi\pi)$ Cut, Motiv. \rightarrow Belle's $M(\pi\pi)$

- After $M(\pi\pi)$ cut, \sim 11 σ Signal
- $M = 3871.4 \pm 0.7 \pm 0.4$ MeV Belle: $3872.0 \pm 0.6 \pm 0.5$ MeV

- Good agreement, CDF $\leftarrow \rightarrow$ Belle
- Studies in Progress :
 - Charmonium/ $D\overline{D}^*$ molecule/ X?
 - Large CDF rate \rightarrow Charmonium?
 - $M(\pi\pi)$ Distribution, $J/\psi\rho$ decay?
 - Prompt/Long lived (Stat. limited)?
 - Angular Distribution(Background)?
 - D0 study in progress

Outlook

- Yield estimate in 220 pb^{-1}
 - D0 \sim 1M J/ψ , CDF \sim 2M J/ψ
 - CDF \sim 300k Tagged D^0 from D^*
 - CDF \sim 900k $D^+ \rightarrow K^- \pi^+ \pi^+$
- Cross section:
 - D0+CDF: Cross section/ Polarization- J/ψ , ψ ', Υ , χ_c ,...
 - CDF: $c\bar{c}$ correlations
- D^0 mixing(CDF):
 - $\Delta\Gamma$: $D^0 \to \pi^+\pi^- \text{ vs } D^0 \to K^-\pi^+$
 - wrong sign $D^0 \to K^+ \pi^-$

- Direct CP violation(CDF):
 - Update $D^0 \rightarrow \pi^+\pi^-$, $D^0 \rightarrow K^+K^-$
 - New channel $D^+ \to \pi^+ \pi^+ \pi^-$
- FCNC(D0+CDF):
 - Update $D^0 \to \mu^+ \mu^-$
 - New channel $D^+ \rightarrow \pi^+ \mu^+ \mu^-$
- Spectroscopy:
 - CDF: More Studies on X(3872)
 - D0+CDF: More Searches...

Backup 1

Backup 2

Backup 3

