

QCD Factorization for B \rightarrow PP, PV Decays

Hadronic B Decays from First Principles

Matthias Neubert (Cornell University)

WIN 2003, Lake Geneva, October 7, 2003

[based on work with M. Beneke: hep-ph/0308039]

Introduction

- most of B physics beyond $\sin 2\beta$ relies on an analysis of hadronic decays such as $B \to \pi K$, $\pi \pi$, ϕK_S , ...
- crucial for CKM studies and New Physics searches
- recently, have learned how to describe such processes theoretically using heavy-quark expansions:

QCD factorization formalism [Beneke et al. 99] **& Soft-collinear effective theory** [Bauer et al. 00]

rigorous results in the heavy-quark limit, valid to all orders of perturbation theory

QCD Factorization Approach

Factorization formula for hadronic B-meson decays: [Beneke, Buchalla, MN, Sachrajda 99]

⇒ model-independent description of hadronic B-decay amplitudes (including their phases) in the heavy-quark limit

QCD Factorization for $B \rightarrow PP$, PV Decays -p.3/30

Inputs to QCD Factorization

CKM parameters ("CKM"):

 \checkmark $|V_{ub}|$, γ

SM parameters and hadronic parameters that can be determined from data ("hadronic 1"):

- light quark masses
- decay constants, heavy-to-light form factors

Hadronic parameters that can only be indirectly determined from data ("hadronic 2"):

- Gegenbauer moments (LCDAs)
- transverse vector-meson decay constants

QCD Factorization for B \rightarrow PP, PV Decays -p.4/30

How Heavy is Heavy Enough?

Importance of heavy-quark limit is evident from comparison of nonfactorizable effects seen in kaon, charm and beauty decays; however, $\Lambda_{\rm QCD}/m_b$ corrections may be important if:

- associated with new flavor topologies ("weak annihilation")
- "chirally-enhanced"

Estimate of leading power corrections ("power"):

- parameterize annihilation contributions (largely universal) by quantity ρ_A (includes "charming penguins"!)
- parameterize power corrections to hard scattering contributions (largely universal) by quantity ϱ_H
- assign 100% uncertainties and arbitrary strong phases to these estimates

Make predictions and listen to data!

- QCD factorization makes many testable predictions
- data can be used to constrain input parameters, and will teach us about the importance of power-suppressed effects

Factorization in Charmless Decays

- factorization in decays $B \to \text{two light mesons can be}$ tested using $B^{\pm} \to \pi^{\pm}\pi^{0}$ (pure tree) and $B^{\pm} \to \pi^{\pm}K^{0}$, $B^{\pm} \to \pi^{\pm}K^{*0}$, $B^{\pm} \to \rho^{\pm}K^{0}$ (pure penguins), which have negligible amplitude interference
- crucial properties:
 - magnitude of tree amplitude
 - magnitude of T/P ratios
 - strong phase of T/P ratios
- once these tests are conclusive, factorization can be used to constrain the unitarity triangle

Part 1: Tree-Dominated Processes

Magnitude of the Tree Amplitude

Absolute prediction for $B^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ branching ratio:

$$\frac{\Gamma(B^{\pm} \to \pi^{\pm} \pi^{0})}{d\Gamma(\bar{B}^{0} \to \pi^{+} l^{-} \bar{\nu})/dq^{2}|_{q^{2}=0}} = 3\pi^{2} f_{\pi}^{2} |V_{ud}|^{2} |\underbrace{a_{1}^{(\pi\pi)} + a_{2}^{(\pi\pi)}}_{1.17^{+0.11}_{-0.07}}|^{2}$$

- study CP-averaged branching fractions (in units 10⁻⁶) for other tree-dominated processes
- theory errors refer to:
 CKM, hadronic 1, hadronic 2, power
- errors are strongly correlated!
 consider different parameter scenarios S1–S4

(only S2 and S4 discussed here)

$B \rightarrow \pi \pi, \pi \rho$ Branching Ratios

Mode	Theory	Experiment	
$B^- \to \pi^- \pi^0$	$6.0_{-2.4-1.8-0.5-0.4}^{+3.0+2.1+1.0+0.4}$	5.3 ± 0.8	
$\bar{B}^0 \to \pi^+ \pi^-$	$8.9_{-3.4}^{+4.0}_{-3.0}_{-1.0}^{+0.6}_{-0.8}^{+1.2}$	4.6 ± 0.4	
$B^- \to \pi^- \rho^0$	$11.9^{+6.3+3.6+2.5+1.3}_{-5.0-3.1-1.2-1.1}$	9.1 ± 1.1	
$B^- \to \pi^0 \rho^-$	$14.0^{+6.5+5.1+1.0+0.8}_{-5.5-4.3-0.6-0.7}$	11.0 ± 2.7	
$\bar{B}^0 \to \pi^+ \rho^-$	$21.2^{+10.3}_{-8.4}{}^{+8.7}_{-7.2}{}^{+1.3}_{-2.3}{}^{+2.0}_{-1.6}$	13.9 ± 2.7	
$\bar{B}^0 \to \pi^- \rho^+$	$15.4_{-6.4}^{+8.0}{}^{+5.5}_{-1.3}{}^{+0.7}_{-1.3}{}^{+1.9}_{-1.3}$	8.9 ± 2.5	
$\bar{B}^0 \to \pi^{\pm} \rho^{\mp}$	$36.5_{-14.7-8.6}^{+18.2+10.3+2.0+3.9}$	24.0 ± 2.5	

⇒ default values for neutral modes are too high, but errors ("CKM" and "hadronic 1") are large Tree-dominated processes have "simple" dynamics and should be well described by QCD factorization; select parameters as follows (all well motivated):

Image: form factors: $F_0^{B \to \pi}(0) = 0.25$ (range: 0.28 ± 0.05), $F_0^{B \to K}(0) = 0.31$ (range: 0.34 ± 0.05)
[favored by recent SCET work and phenomenological analyses]

• strange quark mass: $m_s = 80 \text{ MeV}$ (range: $(90 \pm 20) \text{ MeV}$) [favored by recent, unquenched lattice calculations]

- Segenbauer moments: $\alpha_2^{\pi} = 0.3$ (range: 0.1 ± 0.3), $\lambda_B = 200 \text{ MeV}$ (range: $(350 \pm 150) \text{ MeV}$) [large α_2^{π} favored by QCD sum rules]
- \Rightarrow call this scenario S2 (later also introduce scenario S4)

QCD Factorization for B \rightarrow PP, PV Decays -p.11/30

$B \rightarrow \pi \pi, \pi \rho, \pi \omega$ Branching Ratios

Mode	Theory	S 2	S4	Experiment
$B^- \to \pi^- \pi^0$	$6.0_{-2.4-1.8-0.5-0.4}^{+3.0+2.1+1.0+0.4}$	5.5	5.1	5.3 ± 0.8
$\bar{B}^0 \to \pi^+ \pi^-$	$8.9_{-3.4}^{+4.0}_{-3.0}_{-1.0}^{+0.6}_{-0.8}^{+1.2}$	4.6	5.2	4.6 ± 0.4
$\bar{B}^0 \to \pi^0 \pi^0$	$0.3^{+0.2+0.2+0.3+0.2}_{-0.2-0.1-0.1-0.1}$	0.9	0.7	1.9 ± 0.5
$B^- \to \pi^- \rho^0$	$11.9^{+6.3+3.6+2.5+1.3}_{-5.0-3.1-1.2-1.1}$	12.6	12.3	9.1 ± 1.1
$B^- \to \pi^0 \rho^-$	$14.0^{+6.5+5.1+1.0+0.8}_{-5.5-4.3-0.6-0.7}$	10.4	10.3	11.0 ± 2.7
$\bar{B}^0 \to \pi^+ \rho^-$	$21.2^{+10.3}_{-8.4}{}^{+8.7}_{-7.2}{}^{+1.3}_{-2.3}{}^{+2.0}_{-1.6}$	11.0	11.8	13.9 ± 2.7
$\bar{B}^0 \to \pi^- \rho^+$	$15.4_{-6.4}^{+8.0}{}^{+5.5}_{-1.3}{}^{+0.7}_{-1.3}{}^{+1.9}_{-1.3}$	10.8	11.8	8.9 ± 2.5
$\bar{B}^0 \to \pi^{\pm} \rho^{\mp}$	$36.5^{+18.2+10.3+2.0+3.9}_{-14.7-8.6-3.5-2.9}$	21.8	23.6	24.0 ± 2.5
$\bar{B}^0 \to \pi^0 \rho^0$	$0.4^{+0.2}_{-0.2}{}^{+0.2}_{-0.1}{}^{+0.9}_{-0.3}{}^{+0.5}_{-0.3}$	1.7	1.1	< 2.5
$B^- \to \pi^- \omega$	$8.8 \frac{+4.4 + 2.6 + 1.8 + 0.8}{-3.5 - 2.2 - 0.9 - 0.9}$	9.1	8.4	5.9 ± 1.0

Part 2: Penguin-Dominated Processes

Magnitudes of Penguin Coefficients

QCD penguin amplitudes (incl. penguin annihilation, charming penguins, etc.) are governed by single parameter $\hat{\alpha}_4^c(M_1M_2)$, whose magnitude can be determined from the decays:

- $D B^{\pm} \to \pi^{\pm} K^0: \hat{\alpha}_4^c(\pi K) (\mathsf{PP})$
- $B^{\pm} \to \pi^{\pm} K^{*0}$: $\hat{\alpha}_{4}^{c}(\pi K^{*})$ (PV)
- $D = B^{\pm} \rightarrow \rho^{\pm} K^0 : \hat{\alpha}_4^c(\rho K) (\mathsf{VP})$

QCD factorization predicts that:

- PV penguin $\approx \frac{1}{2} \times$ PP penguin, since $\langle Q_6 \rangle$ matrix element vanishes at leading order
- VP penguin $\approx \frac{1}{2} \times$ PP penguin, since $\langle Q_4 \rangle$ and $\langle Q_6 \rangle$ matrix elements interfere destructively for VP

Divide by $B^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ branching ratio to get $|\hat{\alpha}_{4}^{c}(M_{1}M_{2})|$ independent of hadronic form factors:

- \Rightarrow PP penguin is right on!
- \Rightarrow indeed, strong reduction seen for PV vs. PP!

Add moderate annihilation terms ($\rho_A = 1$) to get a better description of the $B \rightarrow \pi K^*$ penguin amplitude (green dots):

⇒ small effect for PP modes, but noticable for PV modes due to smallness of the penguin amplitude

 \Rightarrow call this scenario S4 (adjusted, but not fitted)

 $B \rightarrow \pi K, \pi K^*$ Branching Ratios

Mode	Theory	S4	Experiment
$B^- \to \pi^- \bar{K}^0$	$19.3^{+1.9+11.3+1.9+13.2}_{-1.9-\ 7.8-2.1-\ 5.6}$	20.3	20.6 ± 1.3
$B^- \to \pi^0 K^-$	$11.1_{-1.7}^{+1.8}_{-4.0}_{-1.0}_{-3.0}^{+0.9}$	11.7	12.8 ± 1.1
$\bar{B}^0 \to \pi^+ K^-$	$16.3^{+2.6+9.6+1.4+11.4}_{-2.3-6.5-1.4-4.8}$	18.4	18.2 ± 0.8
$\bar{B}^0 \to \pi^0 \bar{K}^0$	$7.0^{+0.7}_{-0.7}{}^{+4.7}_{-3.2}{}^{+0.7}_{-0.7}{}^{+5.4}_{-2.3}$	8.0	11.2 ± 1.4
$B^- \to \pi^- \bar{K}^{*0}$	$3.6^{+0.4+1.5+1.2+7.7}_{-0.3-1.4-1.2-2.3}$	8.4	$\begin{array}{c} 9.0\pm1.8\\ \text{[was }13\pm3 \text{]} \end{array}$
$B^- \to \pi^0 K^{*-}$	$3.3^{+1.1}_{-1.0}{}^{+1.0}_{-0.9}{}^{+0.6}_{-0.6}{}^{+4.4}_{-1.4}$	6.5	< 31
$\bar{B}^0 \to \pi^+ K^{*-}$	$3.3^{+1.4+1.3+0.8+6.2}_{-1.2-1.2-0.8-1.6}$	8.1	15.3 ± 3.8
$\bar{B}^0 \to \pi^0 \bar{K}^{*0}$	$0.7^{+0.1}_{-0.1}{}^{+0.5}_{-0.4}{}^{+0.3}_{-0.3}{}^{+2.6}_{-0.5}$	2.5	< 3.5

⇒ uncertainties from weak annihilation and strange-quark mass are fully correlated between different modes!

 $B \rightarrow \rho K, \omega K, \phi K$ Branching Ratios

Mode	Theory	S4	Experiment
$B^- \to \bar{K}^0 \rho^-$	$5.8^{+0.6+7.0+1.5+10.3}_{-0.6-3.3-1.3-3.2}$	9.7	< 48
$B^- \to K^- \rho^0$	$2.6^{+0.9}_{-0.9}{}^{+3.1}_{-1.4}{}^{+0.8}_{-0.6}{}^{+4.3}_{-1.2}$	4.3	4.1 ± 0.8 [was < 6.2]
$\bar{B}^0 \to K^- \rho^+$	$7.4^{+1.8}_{-1.9}^{+7.1}_{-3.6}^{+1.2}_{-1.1}^{+10.7}_{-3.5}$	10.1	9.0 ± 1.6
$\bar{B}^0 \to \bar{K}^0 \rho^0$	$4.6^{+0.5+4.0+0.7+6.1}_{-0.5-2.1-0.7-2.1}$	6.2	< 12
$B^- \to K^- \omega$	$3.5^{+1.0}_{-1.0}{}^{+3.3}_{-1.6}{}^{+1.4}_{-0.9}{}^{+4.7}_{-1.6}$	5.9	5.4 ± 0.8
$\bar{B}^0 \to \bar{K}^0 \omega$	$2.3^{+0.3}_{-0.3}{}^{+2.8}_{-1.3}{}^{+1.3}_{-0.8}{}^{+4.3}_{-1.3}$	4.9	5.2 ± 1.1
$B^- \to K^- \phi$	$4.5_{-0.4-1.7-2.1-3.3}^{+0.5+1.8+1.9+11.8}$	11.6	9.0 ± 1.0
$\bar{B}^0 \to \bar{K}^0 \phi$	$4.1_{-0.4-1.6-1.9-3.0}^{+0.4+1.7+1.8+10.6}$	10.5	8.3 ± 1.1

 \Rightarrow good description of all modes for a fixed set of parameters

Bounds on Weak Annihilation

Are values $\rho_A \gg 1$ possible, which could upset the heavy-quark expansion?

[Ciuchini et al. (hep-ph/0212397) suggested to use $0 < \varrho_A < 8$ to be conservative]

 \Rightarrow needs significant fine-tuning! (red: $\rho_A = 2$, gray: $\rho_A = 3$)

QCD Factorization for $B \rightarrow PP$, PV Decays -p.19/30

Even better: Values $\rho_A \ge 2$ are already excluded by the data!

Mode	Default Large Annihilation		Experiment
		(red dot: $\varrho_A = 2$)	
$\bar{B}^0 \to \pi^0 \bar{K}^{*0}$	0.7	6.0	< 3.5
$B^- \to K^- \rho^0$	2.6	9.0	4.1 ± 0.8
$\bar{B}^0 \to K^- \rho^+$	7.4	19.3	9.0 ± 1.6
$B^- \to K^- \phi$	4.5	22.4	9.0 ± 0.7
$\bar{B}^0 \to \bar{K}^0 \phi$	4.1	20.2	8.3 ± 1.1

Part 3: Processes With Flavor Singlets

Final States Containing η or η'

Mode	S4	Experiment	Mode	S4	Experiment
$B^- \to \eta K^-$	1.6	3.1 ± 0.7	$B^- \to \eta K^{*-}$	19.9	25.9 ± 3.4
$\bar{B}^0 \to \eta \bar{K}^0$	1.1	< 4.6	$\bar{B}^0 \to \eta \bar{K}^{*0}$	18.6	17.8 ± 2.1
$B^- \to \eta' K^-$	76.1	77.6 ± 4.6	$B^- \to \eta' K^{*-}$	2.2	< 12
$\bar{B}^0 \to \eta' \bar{K}^0$	70.3	65.2 ± 6.0	$\bar{B}^0 \to \eta' \bar{K}^{*0}$	1.9	< 6.4
$B^- \to \pi^- \eta$	3.8	3.9 ± 0.9	$B^- \to \eta \rho^-$	6.3	8.9 ± 2.7
$\bar{B}^0 \to \pi^0 \eta$	0.3	< 2.9	$\bar{B}^0 \to \eta \rho^0$	0.1	[was < 6.2] < 5.5
$B^- \to \pi^- \eta'$	2.9	< 7	$B^- \to \eta' \rho^-$	4.2	13.3 ± 4.7
$\bar{B}^0 \to \pi^0 \eta'$	0.4	< 5.7	$\bar{B}^0 \to \eta' \rho^0$	0.1	[was < 33] < 12

 \Rightarrow no need for mysterious, enhanced decays mechanisms! (anomaly, intrinsic charm, etc.)

Part 4: CP Asymmetries (Test of small strong phases)

Direct CP Asymmetries (in %)

Mode	S 4	Experiment	Mode	S 4	Experiment
$B^- \to \pi^- \bar{K}^0$	0	-2 ± 9	$B^- \to K^- \omega$	19	0 ± 12
$B^- \to \pi^0 K^-$	-4	1 ± 12	$\bar{B}^0 \to \bar{K}^0 \omega$	4	
$\bar{B}^0 \to \pi^+ K^-$	-4	-9 ± 4	$B^- \to K^- \phi$	1	3 ± 7
$\bar{B}^0 \to \pi^0 \bar{K}^0$	1	3 ± 37	$\bar{B}^0 \to \bar{K}^0 \phi$	1	19 ± 68
$B^- \to \pi^- \pi^0$	0	-7 ± 14	$B^- \to \pi^- \rho^0$	-11	-17 ± 11
$\bar{B}^0 \to \pi^+ \pi^-$	10	51 ± 23	$B^- \to \pi^0 \rho^-$	10	23 ± 17
$B^- \to \pi^- \omega$	-6	9 ± 21	$\bar{B}^0 \to \pi^+ \rho^-$	4	-11 ± 17
			$\bar{B}^0 \to \pi^- \rho^+$	-13	-62 ± 27

- \Rightarrow no significant discrepancies
- \Rightarrow our biggest success: They are all small!

Part 5:

Hadronic Effects on Time-Dependent CP Asymmetries

Important predictions for New Physics searches:

$$S_{\phi K_S} - S_{J/\psi K_S} = 0.01 - 0.05$$

$$S_{\eta' K_S} - S_{J/\psi K_S} = 0.00 - 0.03$$

$$S_{\pi^0 K_S} - S_{J/\psi K_S} = 0.06 - 0.13$$

- model-independent predictions in heavy-quark limit (plus leading $\Lambda_{\rm QCD}/m_b$ corrections)
- consistent with, but more powerful than, bounds obtained assuming SU(3) symmetry (< 0.34, < 0.49, < 0.19)
 [Grossman, Ligeti, Nir, Quinn 03; Gronau, Grossman, Rosner 03]

Part 6: Measuring $\sin 2(\beta + \gamma)$ in $B \to \pi^{\pm} \rho^{\mp}$ Decays

Described in terms of 5 parameters: $C, \Delta C, S, \Delta S, A_{CP}$ Parameter *S* has a clean interpretation:

$$S = \frac{2R}{1+R^2} \sin 2\alpha + \mathcal{O}(P/T) \,,$$

where $R = 0.9 \pm 0.2$ is a ratio of form factors, and the P/T correction is fortuitously small

- **penguin "pollution" much less than in** $B \rightarrow \pi \pi$
- clean measurement of $\sin 2\alpha$ with minimal theoretical uncertainties (well below $\pm 10^{\circ}$)
- **best determination of** γ to date!

Results (assuming $\beta = 24^{\circ}$)

$$B \rightarrow \pi^{\pm} \rho^{\mp}$$
 decay:

 $\gamma = (72 \pm 11)^{\circ}$ or $\gamma = (151 \pm 10)^{\circ}$ [95% CL: $\gamma = (72 \pm 20)^{\circ}$]

 $B \rightarrow \pi^+\pi^-$ decay: $\gamma = (66^{+19}_{-16})^\circ$ or $\gamma = (174^{+9}_{-8})^\circ$

Conclusions

QCD factorization theorems make a large class of exclusive hadronic B decays accessible to a systematic theoretical treatment based on the heavy-quark expansion

Conclusions

- QCD factorization theorems make a large class of exclusive hadronic B decays accessible to a systematic theoretical treatment based on the heavy-quark expansion
- This theory provides a successful, global description of all available data on charmless B decays and makes many more predictions (also for B_s decays)

Conclusions

- QCD factorization theorems make a large class of exclusive hadronic B decays accessible to a systematic theoretical treatment based on the heavy-quark expansion
- This theory provides a successful, global description of all available data on charmless B decays and makes many more predictions (also for B_s decays)
- Significant progress toward a theory (not just a model) of hadronic B decays has been made!