QCD Factorization for $\mathbf{B} \rightarrow \mathbf{P P}, \mathbf{P V}$ Decays

Hadronic B Decays from First Principles

Matthias Neubert (Cornell University)

WIN 2003, Lake Geneva, October 7, 2003

[based on work with M. Beneke: hep-ph/0308039]

Introduction

- most of B physics beyond $\sin 2 \beta$ relies on an analysis of hadronic decays such as $B \rightarrow \pi K, \pi \pi, \phi K_{S}, \ldots$
- crucial for CKM studies and New Physics searches
- recently, have learned how to describe such processes theoretically using heavy-quark expansions:

QCD factorization formalism [Beneke et al. 99] \& Soft-collinear effective theory [Bauer et al. 00]

- rigorous results in the heavy-quark limit, valid to all orders of perturbation theory

QCD Factorization Approach

Factorization formula for hadronic B-meson decays:
[Beneke, Buchalla, MN, Sachrajda 99]

\Rightarrow model-independent description of hadronic B-decay amplitudes (including their phases) in the heavy-quark limit

Inputs to QCD Factorization

CKM parameters ("CKM"):

- $\left|V_{u b}\right|, \gamma$

SM parameters and hadronic parameters that can be determined from data ("hadronic 1"):

- light quark masses
- decay constants, heavy-to-light form factors

Hadronic parameters that can only be indirectly determined from data ("hadronic 2"):

- Gegenbauer moments (LCDAs)
- transverse vector-meson decay constants

How Heavy is Heavy Enough?

Importance of heavy-quark limit is evident from comparison of nonfactorizable effects seen in kaon, charm and beauty decays; however, $\Lambda_{\mathrm{QCD}} / m_{b}$ corrections may be important if:

- associated with new flavor topologies ("weak annihilation")
- "chirally-enhanced"

Estimate of leading power corrections ("power"):

- parameterize annihilation contributions (largely universal) by quantity ϱ_{A} (includes "charming penguins"!)
- parameterize power corrections to hard scattering contributions (largely universal) by quantity ϱ_{H}
- assign 100\% uncertainties and arbitrary strong phases to these estimates

Make predictions and listen to data!

- QCD factorization makes many testable predictions
- data can be used to constrain input parameters, and will teach us about the importance of power-suppressed effects

Factorization in Charmless Decays

- factorization in decays $B \rightarrow$ two light mesons can be tested using $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$ (pure tree) and $B^{ \pm} \rightarrow \pi^{ \pm} K^{0}$, $B^{ \pm} \rightarrow \pi^{ \pm} K^{* 0}, B^{ \pm} \rightarrow \rho^{ \pm} K^{0}$ (pure penguins), which have negligible amplitude interference
- crucial properties:
- magnitude of tree amplitude
- magnitude of T / P ratios
- strong phase of T / P ratios
- once these tests are conclusive, factorization can be used to constrain the unitarity triangle

Part 1:
Tree-Dominated Processes

Magnitude of the Tree Amplitude

Absolute prediction for $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$ branching ratio:

$$
\frac{\Gamma\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)}{d \Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} l-\bar{\nu}\right) /\left.d q^{2}\right|_{q^{2}=0}}=3 \pi^{2} f_{\pi}^{2}\left|V_{u d}\right|^{2}|\underbrace{a_{1}^{(\pi \pi)}+a_{2}^{(\pi \pi)}}_{1.17_{-0.07}^{+0.11}}|^{2}
$$

- study CP-averaged branching fractions (in units 10^{-6}) for other tree-dominated processes
- theory errors refer to:

CKM, hadronic 1, hadronic 2, power

- errors are strongly correlated!
\Rightarrow consider different parameter scenarios S1-S4
(only S2 and S4 discussed here)

$B \rightarrow \pi \pi, \pi \rho$ Branching Ratios

Mode	Theory	Experiment
$B^{-} \rightarrow \pi^{-} \pi^{0}$	$6.0_{-2.4}^{+3.0+2.1}{ }_{-0.5}^{+1.0+0.4}{ }_{-0.4}$	5.3 ± 0.8
$\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}$	$8.9{ }_{-3.4}^{+4.0}{ }_{-3.0}+3.0{ }_{-1.0}+0.8$	4.6 ± 0.4
$B^{-} \rightarrow \pi^{-} \rho^{0}$	$11.9{ }_{-5.0}^{+6.3+3.6+2.5+1.3}{ }_{-1.1}$	9.1 ± 1.1
$B^{-} \rightarrow \pi^{0} \rho^{-}$	$14.0{ }_{-5.5}^{+6.5}+5.3+{ }_{-0.6}^{+1.0}{ }_{-0.7}^{+0.8}$	11.0 ± 2.7
$\bar{B}^{0} \rightarrow \pi^{+} \rho^{-}$	$21.2{ }_{-8.4}^{+10.3+8.7}{ }_{-7.3}+1.3+2.0$	13.9 ± 2.7
$\bar{B}^{0} \rightarrow \pi^{-} \rho^{+}$	$15.4_{-6.4-4.7-1.3-1.3}^{+8.0+5.5+0.7+1.9}$	8.9 ± 2.5
$\bar{B}^{0} \rightarrow \pi^{ \pm} \rho^{\mp}$	$36.5_{-14.7}^{+18.2+10.3+2.0+3.9}+{ }_{-2.9}$	24.0 ± 2.5

\Rightarrow default values for neutral modes are too high, but errors ("CKM" and "hadronic 1") are large

Observations

Tree-dominated processes have "simple" dynamics and should be well described by QCD factorization; select parameters as follows (all well motivated):

- form factors: $F_{0}^{B \rightarrow \pi}(0)=0.25$ (range: 0.28 ± 0.05),

$$
\left.F_{0}^{B \rightarrow K}(0)=0.31 \text { (range: } 0.34 \pm 0.05\right)
$$

[favored by recent SCET work and phenomenological analyses]

- strange quark mass: $m_{s}=80 \mathrm{MeV}$ (range: $(90 \pm 20) \mathrm{MeV}$) [favored by recent, unquenched lattice calculations]
- Gegenbauer moments: $\alpha_{2}^{\pi}=0.3$ (range: 0.1 ± 0.3), $\lambda_{B}=200 \mathrm{MeV}$ (range: $\left.(350 \pm 150) \mathrm{MeV}\right)$
[large α_{2}^{π} favored by QCD sum rules]
\Rightarrow call this scenario S2 (later also introduce scenario S4)

$B \rightarrow \pi \pi, \pi \rho, \pi \omega$ Branching Ratios

Mode	Theory	S2	S4	Experiment
$B^{-} \rightarrow \pi^{-} \pi^{0}$	$6.0{ }_{-2.4}^{+3.0+2.1}{ }_{-1.8}^{+1.0}{ }_{-0.5}{ }_{-0.4}$	5.5	5.1	5.3 ± 0.8
$\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}$	$8.9{ }_{-3.4}^{+4.0}{ }_{-3.0} \mathbf{3}{ }_{-1.0}+0.6+1.2$	4.6	5.2	4.6 ± 0.4
$\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}$	$0.3{ }_{-0.2}^{+0.2}{ }_{-0.1}^{+0.2}{ }_{-0.1}{ }_{-0.1}$	0.9	0.7	1.9 ± 0.5
$B^{-} \rightarrow \pi^{-} \rho^{0}$	$11.9{ }_{-5.0}^{+6.3+3.6}{ }_{-3.1}{ }_{-1.2}{ }_{-1.1}$	12.6	12.3	9.1 ± 1.1
$B^{-} \rightarrow \pi^{0} \rho^{-}$	$14.0{ }_{-5.5}^{+6.5}{ }_{-4.3}^{+5.1}{ }_{-0.6}^{+1.0}{ }_{-0.7}$	10.4	10.3	11.0 ± 2.7
$\bar{B}^{0} \rightarrow \pi^{+} \rho^{-}$	$\begin{aligned} & 21.2_{-8.4}^{+10.3}+8.7{ }_{-2.3}^{+1.3}{ }_{-2.0}^{+2.0} \end{aligned}$	11.0	11.8	13.9 ± 2.7
$\bar{B}^{0} \rightarrow \pi^{-} \rho^{+}$	$15.4{ }_{-6.4}^{+8.0}+5.5{ }_{-1.3}^{+0.7}{ }_{-1.3}$	10.8	11.8	8.9 ± 2.5
$\bar{B}^{0} \rightarrow \pi^{ \pm} \rho^{\mp}$	$36.5_{-14.7}^{+18.2+{ }_{-8.6-3.5}+2.3 .9}$	21.8	23.6	24.0 ± 2.5
$\bar{B}^{0} \rightarrow \pi^{0} \rho^{0}$	$0.4{ }_{-0.2}^{+0.2}{ }_{-0.1}^{+0.2}{ }_{-0.3}{ }_{-0.3}^{+0.5}$	1.7	1.1	< 2.5
$B^{-} \rightarrow \pi^{-} \omega$	$8.8{ }_{-3.5}^{+4.4+2.6}{ }_{-2.2}^{+1.8}{ }_{-0.9}^{+0.8}$	9.1	8.4	5.9 ± 1.0

Part 2:

Penguin-Dominated Processes

Magnitudes of Penguin Coefficients

QCD penguin amplitudes (incl. penguin annihilation, charming penguins, etc.) are governed by single parameter $\hat{\alpha}_{4}^{c}\left(M_{1} M_{2}\right)$, whose magnitude can be determined from the decays:

- $B^{ \pm} \rightarrow \pi^{ \pm} K^{0}: \hat{\alpha}_{4}^{c}(\pi K)(\mathrm{PP})$
- $B^{ \pm} \rightarrow \pi^{ \pm} K^{* 0}: \hat{\alpha}_{4}^{c}\left(\pi K^{*}\right)(\mathrm{PV})$
- $B^{ \pm} \rightarrow \rho^{ \pm} K^{0}: \quad \hat{\alpha}_{4}^{c}(\rho K)(\mathrm{VP})$

QCD factorization predicts that:

- PV penguin $\approx \frac{1}{2} \times$ PP penguin, since $\left\langle Q_{6}\right\rangle$ matrix element vanishes at leading order
- VP penguin $\approx \frac{1}{2} \times \mathrm{PP}$ penguin, since $\left\langle Q_{4}\right\rangle$ and $\left\langle Q_{6}\right\rangle$ matrix elements interfere destructively for VP

Divide by $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$ branching ratio to get $\left|\hat{\alpha}_{4}^{c}\left(M_{1} M_{2}\right)\right|$ independent of hadronic form factors:

\Rightarrow PP penguin is right on!
\Rightarrow indeed, strong reduction seen for PV vs. PP!

Add moderate annihilation terms $\left(\varrho_{A}=1\right)$ to get a better description of the $B \rightarrow \pi K^{*}$ penguin amplitude (green dots):

\Rightarrow small effect for PP modes, but noticable for PV modes due to smallness of the penguin amplitude
\Rightarrow call this scenario S4 (adjusted, but not fitted)

$B \rightarrow \pi K, \pi K^{*}$ Branching Ratios

Mode	Theory	S4	Experiment
$B^{-} \rightarrow \pi^{-} \bar{K}^{0}$	$\begin{aligned} & 19.3_{-1.9-7.8-2.1-5.2}^{+1.9+11.3+1.9+13.2} \end{aligned}$	20.3	20.6 ± 1.3
$B^{-} \rightarrow \pi^{0} K^{-}$	$11.1{ }_{-1.7}^{+1.8}+4.8{ }^{-5.0}+0.9+6.9{ }_{-3.0}$	11.7	12.8 ± 1.1
$\bar{B}^{0} \rightarrow \pi^{+} K^{-}$	$16.3{ }_{-2.3}^{+2.6+6.5-1.4+11.4}$	18.4	18.2 ± 0.8
$\bar{B}^{0} \rightarrow \pi^{0} \bar{K}^{0}$	$7.0_{-0.7}^{+0.7}+4.2+0.7+-0.4$	8.0	11.2 ± 1.4
$B^{-} \rightarrow \pi^{-} \bar{K}^{* 0}$	$3.6{ }_{-0.3}^{+0.4+1.4}{ }_{-1.2}^{+1.2}{ }_{-2.3}^{+7.7}$	8.4	$\begin{gathered} 9.0 \pm 1.8 \\ \text { [was } 13 \pm 3] \end{gathered}$
$B^{-} \rightarrow \pi^{0} K^{*-}$	$3.3{ }_{-1.0}^{+1.1}+1.0{ }_{-0.9}^{+0.6}{ }_{-0.6}+1.4$	6.5	<31
$\bar{B}^{0} \rightarrow \pi^{+} K^{*-}$	$3.3{ }_{-1.2}^{+1.4}{ }_{-1.2}{ }_{-0.8}^{+1.8}{ }_{-1.6}^{+6.2}$	8.1	15.3 ± 3.8
$\bar{B}^{0} \rightarrow \pi^{0} \bar{K}^{* 0}$	$0.7_{-0.1}^{+0.1}+0.5{ }_{-0.3}^{+0.3}{ }_{-0.5}^{+2.6}$	2.5	< 3.5

\Rightarrow uncertainties from weak annihilation and strange-quark mass are fully correlated between different modes!

$B \rightarrow \rho K, \omega K, \phi K$ Branching Ratios

Mode	Theory	S4	Experiment
$B^{-} \rightarrow \bar{K}^{0} \rho^{-}$	$5.8_{-0.6-3.3-1.3-10.3}^{+0.6+7.0+1.5+1.2}$	9.7	<48
$B^{-} \rightarrow K^{-} \rho^{0}$	$2.6{ }_{-0.9}^{+0.9+1.4}{ }_{-0.6}^{+3.8}{ }_{-1.2}^{+4.3}$	4.3	$\begin{gathered} 4.1 \pm 0.8 \\ {[\text { was }<6.2]} \end{gathered}$
$\bar{B}^{0} \rightarrow K^{-} \rho^{+}$	$\begin{array}{r} 7.4_{-1.9}^{+1.8+7.6}{ }_{-1.1}^{+7.1}{ }_{-3.5}^{+10.7} \end{array}$	10.1	9.0 ± 1.6
$\bar{B}^{0} \rightarrow \bar{K}^{0} \rho^{0}$	$4.6_{-0.5}^{+0.5+4.0}+{ }_{-0.7}^{+0.7}+6.1$	6.2	<12
$B^{-} \rightarrow K^{-} \omega$	$3.5{ }_{-1.0}^{+1.0}{ }_{-1.6}^{+3.3}{ }_{-0.9}^{+1.4}{ }_{-1.6}^{+4.7}$	5.9	5.4 ± 0.8
$\bar{B}^{0} \rightarrow \bar{K}^{0} \omega$	$2.3_{-0.3}^{+0.3+2.8}{ }_{-0.8}^{+1.3}{ }_{-1.3}^{+4.3}$	4.9	5.2 ± 1.1
$B^{-} \rightarrow K^{-} \phi$	$4.5_{-0.4}^{+0.5+1.7}{ }_{-2.1}^{+1.9+11.8}$	11.6	9.0 ± 1.0
$\bar{B}^{0} \rightarrow \bar{K}^{0} \phi$	$4.1_{-0.4-1.6}^{+0.4}+1.7-1.8+10.6$	10.5	8.3 ± 1.1

\Rightarrow good description of all modes for a fixed set of parameters

Bounds on Weak Annihilation

Are values $\varrho_{A} \gg 1$ possible, which could upset the heavy-quark expansion?
[Ciuchini et al. (hep-ph/0212397) suggested to use $0<\varrho_{A}<8$ to be conservative]

\Rightarrow needs significant fine-tuning! (red: $\varrho_{A}=2$, gray: $\varrho_{A}=3$)

Even better:

Values $\varrho_{A} \geq 2$ are already excluded by the data!

Mode	Default	Large Annihilation (red dot: $\left.\varrho_{A}=2\right)$	Experiment
$\bar{B}^{0} \rightarrow \pi^{0} \bar{K}^{* 0}$	0.7	6.0	<3.5
$B^{-} \rightarrow K^{-} \rho^{0}$	2.6	9.0	4.1 ± 0.8
$\bar{B}^{0} \rightarrow K^{-} \rho^{+}$	7.4	19.3	9.0 ± 1.6
$B^{-} \rightarrow K^{-} \phi$	4.5	22.4	9.0 ± 0.7
$\bar{B}^{0} \rightarrow \bar{K}^{0} \phi$	4.1	20.2	8.3 ± 1.1

Part 3:
Processes With Flavor Singlets

Final States Containing η or η^{\prime}

Mode	S4	Experiment	Mode	S4	Experiment
$B^{-} \rightarrow \eta K^{-}$	1.6	3.1 ± 0.7	$B^{-} \rightarrow \eta K^{*-}$	19.9	25.9 ± 3.4
$\bar{B}^{0} \rightarrow \eta \bar{K}^{0}$	1.1	<4.6	$\bar{B}^{0} \rightarrow \eta \bar{K}^{* 0}$	18.6	17.8 ± 2.1
$B^{-} \rightarrow \eta^{\prime} K^{-}$	76.1	77.6 ± 4.6	$B^{-} \rightarrow \eta^{\prime} K^{*-}$	2.2	<12
$\bar{B}^{0} \rightarrow \eta^{\prime} \bar{K}^{0}$	70.3	65.2 ± 6.0	$\bar{B}^{0} \rightarrow \eta^{\prime} \bar{K}^{* 0}$	1.9	<6.4
$B^{-} \rightarrow \pi^{-} \eta$	3.8	3.9 ± 0.9	$B^{-} \rightarrow \eta \rho^{-}$	6.3	8.9 ± 2.7
$\bar{B}^{0} \rightarrow \pi^{0} \eta$	0.3	<2.9	$\bar{B}^{0} \rightarrow \eta \rho^{0}$	0.1	<5.5
$B^{-} \rightarrow \pi^{-} \eta^{\prime}$	2.9	<7	$B^{-} \rightarrow \eta^{\prime} \rho^{-}$	4.2	13.3 ± 4.7
$\bar{B}^{0} \rightarrow \pi^{0} \eta^{\prime}$	0.4	<5.7	$\bar{B}^{0} \rightarrow \eta^{\prime} \rho^{0}$	0.1	$[$ was $<33]$

\Rightarrow no need for mysterious, enhanced decays mechanisms! (anomaly, intrinsic charm, etc.)

Part 4:
CP Asymmetries (Test of small strong phases)

Direct CP Asymmetries (in \%)

Mode	S4	Experiment	Mode	S4	Experiment
$B^{-} \rightarrow \pi^{-} \bar{K}^{0}$	0	-2 ± 9	$B^{-} \rightarrow K^{-} \omega$	19	0 ± 12
$B^{-} \rightarrow \pi^{0} K^{-}$	-4	1 ± 12	$\bar{B}^{0} \rightarrow \bar{K}^{0} \omega$	4	-
$\bar{B}^{0} \rightarrow \pi^{+} K^{-}$	-4	-9 ± 4	$B^{-} \rightarrow K^{-} \phi$	1	3 ± 7
$\bar{B}^{0} \rightarrow \pi^{0} \bar{K}^{0}$	1	3 ± 37	$\bar{B}^{0} \rightarrow \bar{K}^{0} \phi$	1	19 ± 68
$B^{-} \rightarrow \pi^{-} \pi^{0}$	0	-7 ± 14	$B^{-} \rightarrow \pi^{-} \rho^{0}$	-11	-17 ± 11
$\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}$	10	51 ± 23	$B^{-} \rightarrow \pi^{0} \rho^{-}$	10	23 ± 17
$B^{-} \rightarrow \pi^{-} \omega$	-6	9 ± 21	$\bar{B}^{0} \rightarrow \pi^{+} \rho^{-}$	4	-11 ± 17
			$\bar{B}^{0} \rightarrow \pi^{-} \rho^{+}$	-13	-62 ± 27

\Rightarrow no significant discrepancies
\Rightarrow our biggest success: They are all small!

Part 5:

Hadronic Effects on Time-

 Dependent CP Asymmmetries
Important predictions for New Physics searches:

$$
\begin{aligned}
S_{\phi K_{S}}-S_{J / \psi K_{S}} & =0.01-0.05 \\
S_{\eta^{\prime} K_{S}}-S_{J / \psi K_{S}} & =0.00-0.03 \\
S_{\pi^{0} K_{S}}-S_{J / \psi K_{S}} & =0.06-0.13
\end{aligned}
$$

- model-independent predictions in heavy-quark limit (plus leading $\Lambda_{\mathrm{QCD}} / m_{b}$ corrections)
- consistent with, but more powerful than, bounds obtained assuming $\operatorname{SU}(3)$ symmetry $(<0.34,<0.49,<0.19)$
[Grossman, Ligeti, Nir, Quinn 03; Gronau, Grossman, Rosner 03]

Part 6:

Measuring $\sin 2(\beta+\gamma)$ in $B \rightarrow \pi^{ \pm} \rho^{\mp}$ Decays

CP Violation in $B \rightarrow \pi^{ \pm} \rho^{\mp}$

Described in terms of 5 parameters: $C, \Delta C, S, \Delta S, A_{\mathrm{CP}}$
Parameter S has a clean interpretation:

$$
S=\frac{2 R}{1+R^{2}} \sin 2 \alpha+\mathcal{O}(P / T)
$$

where $R=0.9 \pm 0.2$ is a ratio of form factors, and the P / T correction is fortuitously small

- penguin "pollution" much less than in $B \rightarrow \pi \pi$
- clean measurement of $\sin 2 \alpha$ with minimal theoretical uncertainties (well below $\pm 10^{\circ}$)
- best determination of γ to date!

Results (assuming $\beta=24^{\circ}$)

$B \rightarrow \pi^{ \pm} \rho^{\mp}$ decay:
$\gamma=(72 \pm 11)^{\circ}$
or $\gamma=(151 \pm 10)^{\circ}$
[95\% CL: $\gamma=(72 \pm 20)^{\circ}$]

$B \rightarrow \pi^{+} \pi^{-}$decay:
$\gamma=\left(66_{-16}^{+19}\right)^{\circ}$
or $\gamma=\left(174_{-8}^{+9}\right)^{\circ}$

Conclusions

- QCD factorization theorems make a large class of exclusive hadronic B decays accessible to a systematic theoretical treatment based on the heavy-quark expansion

Conclusions

- QCD factorization theorems make a large class of exclusive hadronic B decays accessible to a systematic theoretical treatment based on the heavy-quark expansion
- This theory provides a successful, global description of all available data on charmless B decays and makes many more predictions (also for B_{s} decays)

Conclusions

- QCD factorization theorems make a large class of exclusive hadronic B decays accessible to a systematic theoretical treatment based on the heavy-quark expansion
- This theory provides a successful, global description of all available data on charmless B decays and makes many more predictions (also for B_{s} decays)
- Significant progress toward a theory (not just a model) of hadronic B decays has been made!

