Measurements of γ/ϕ_3 Results from Belle and BaBar

Shahram Rahatlou University of California, San Diego

Weak Interactions and Neutrino Workshop Lake Geneva, 7 October 2003

Outline

- Current indirect constraints on γ
- Brief overview of proposed approaches to measure γ
 - Time dependent analysis
 - Relation between branching fractions
- Time dependent analysis in $B \rightarrow D^{(*)}\pi$
- B \rightarrow D^(*)K^(*) branching ratio
- Charmless B decays
- Summary and Outlook

CP Violation in Standard Model

Standard Model with 3 generations accommodates CP violation through a phase in CKM matrix

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{ts} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$\boxed{\text{Unitarity of the CKM Matrix}} \qquad \boxed{V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0}$$

$$\bigvee_{ud} \bigvee_{ub}^* & (Area \neq 0 \rightarrow CP \text{ violation})$$

$$\boxed{V_{ud}V_{ub}^*} \qquad \boxed{V_{cd}V_{cb}^*}$$

$$\boxed{\text{Sides: measured in decay rates}}$$

$$\boxed{\text{Angles: CP violating effects}}$$

Current Constraints on the CKM Angles

World Average $\sin 2\beta = 0.736 \pm 0.049$

95% CL intervals with CKM Fitter:

 $19.4^{\circ} < \beta < 26.5^{\circ}$ $77^{\circ} < \alpha < 122^{\circ}$ $37^{\circ} < \gamma < 80^{\circ}$

More aggressive constraints on γ possible with strong theoretical assumptions

Direct measurement of γ is needed!

 Δm_d

 $\Delta m_s \& \Delta m_d$

Data Samples Collected with Belle and BaBar

BELLE @ KEK-B Accelerator

BaBar @ PEP-II Accelerator

140 fb⁻¹ on Y(4s) (158 fb⁻¹ total) 152 million B B events

113 fb^{-1} on Y(4s) (126 fb^{-1} total) 124 million B B events

Shahram Rahatlou

Measurement of sin($2\beta + \gamma$) in B⁰ \rightarrow D^(*) π

- Advantage:
 - Large branching fraction for favored decay (~3 x 10⁻³)
 - Most other techniques rely on modes with small BR
- Disadvantage:
 - Much smaller BR for suppressed decay (~10⁻⁶)
 - Small CP violating amplitude:

$$r(D^{(*)}\pi) \equiv r_{(*)} = \left| \frac{A(\overline{B}^{0} \to D^{(*)-}\pi^{+})}{A(B^{0} \to D^{(*)-}\pi^{+})} \right| \approx 0.02$$

Time-dependent decay rate distributions

$$\begin{split} f\left(B^{0} \to D^{(*)-}\pi^{+}, \Delta t\right) &= N e^{-\Gamma|\Delta t|} \left\{1 + C^{(*)}\cos\left(\Delta m_{d}\Delta t\right) + S^{(*)}\sin\left(\Delta m_{d}\Delta t\right)\right\} \\ f\left(\overline{B}^{0} \to D^{(*)-}\pi^{+}, \Delta t\right) &= N e^{-\Gamma|\Delta t|} \left\{1 - C^{(*)}\cos\left(\Delta m_{d}\Delta t\right) - S^{(*)}\sin\left(\Delta m_{d}\Delta t\right)\right\} \\ f\left(\overline{B}^{0} \to D^{(*)+}\pi^{-}, \Delta t\right) &= N e^{-\Gamma|\Delta t|} \left\{1 + C^{(*)}\cos\left(\Delta m_{d}\Delta t\right) - \overline{S}^{(*)}\sin\left(\Delta m_{d}\Delta t\right)\right\} \\ f\left(B^{0} \to D^{(*)+}\pi^{-}, \Delta t\right) &= N e^{-\Gamma|\Delta t|} \left\{1 - C^{(*)}\cos\left(\Delta m_{d}\Delta t\right) + \overline{S}^{(*)}\sin\left(\Delta m_{d}\Delta t\right)\right\} \end{split}$$

$$C^{(*)} = \frac{1 - r_{(*)}^2}{1 + r_{(*)}^2} \approx 1$$

- Measurement of ${\color{black}{S}}$ and ${\color{black}{S}}$ determine $2\beta{\color{black}{+}}\gamma$ and δ

• Using $D\pi$ and $D^*\pi$ removes some ambiguities

4 ambiguities on $2\beta + \gamma$

Shahram Rahatlou

Impact of CP Violation on tag side

- Similar interference occurs in B decay used for flavor tagging
 - Potential competing CP-violating effect
 - Modified time distributions
- For example: $f\left(D^{(*)-}\pi^{+},\Delta t\right) \propto 1 + C^{(*)}\cos\left(\Delta m_{d}\Delta t\right)$ $+ \sin\left(\Delta m_{d}\Delta t\right) \left[\pm 2r\sin(2\beta + \gamma + \delta) + 2r'\sin(2\beta + \gamma \pm \delta')\right]$ signal side tag side
- Re-parameterize the sine coefficients as a sum of 3 terms
 - 1 term unchanged, 2 terms absorb the tag-side effect

Lepton flavor tags

 $\begin{cases} a \equiv 2r\sin(2\beta + \gamma)\cos\delta \\ b \equiv 0 \end{cases}$

$$c_{lep} \equiv 2r\cos(2\beta + \gamma)\sin\delta$$

WIN03

No corresponding Vub amplitude in semileptonic decays

Kaon and other flavor tags

(Long, Baak, Cahn, Kirkby: PRD68, 034010)

 $\begin{cases} a \equiv 2r \sin(2\beta + \gamma) \cos \delta \\ b \equiv 2r' \sin(2\beta + \gamma) \cos \delta' \\ c \equiv 2\cos(2\beta + \gamma)(r \sin \delta - r' \sin \delta') \end{cases}$

Shahram Rahatlou

^{81 fb⁻¹} Exclusive and Partially Reconstructed samples

- Exclusive reconstruction
 - High purity
 - 'Smaller' than partially reconstructed sample

 $N(D\pi) = 5207 \pm 87$ Purity = 85 %

- Partial Reconstruction
 - $B^{0} \longrightarrow D^{*} \overline{\pi_{f}^{+}}$ $\overline{D}^{0} \overline{\pi_{s}^{-}}$ More background
 - More background that needs to be understood

Shahram Rahatlou

Results from fully reconstructed sample with BaBar

All tags
$$\begin{cases} 2r \sin(2\beta + \gamma) \cos \delta[D\pi] = -0.022 \pm 0.038 \text{ (stat.)} \pm 0.021 \text{ (syst.)} \\ 2r_* \sin(2\beta + \gamma) \cos \delta[D^*\pi] = -0.068 \pm 0.038 \text{ (stat.)} \pm 0.021 \text{ (syst.)} \\ 2r \cos(2\beta + \gamma) \sin \delta[D\pi] = +0.025 \pm 0.068 \text{ (stat.)} \pm 0.035 \text{ (syst.)} \\ 2r_* \cos(2\beta + \gamma) \sin \delta[D^*\pi] = +0.031 \pm 0.070 \text{ (stat.)} \pm 0.035 \text{ (syst.)} \end{cases}$$

- How to interpret the result?
 - Estimate r from $B^0 \rightarrow D_s^{(^{*})_+} \pi^$ decays using SU(3) symmetry

$$r_{(*)} \approx \sqrt{\frac{\mathcal{B}(B^0 \to D_s^{(*)+} \pi^-)}{\mathcal{B}(B^0 \to D^{(*)+} \pi^+)}} \left| \frac{V_{cd}}{V_{cs}} \right| \frac{f_{D^{(*)}}}{f_{D_s^{(*)}}}$$

$$r_{(D^*\pi)} = 0.017^{+0.005}_{-0.007}$$

$$r_{(D\pi)} = 0.021^{+0.004}_{-0.005}$$

30% Theoretical Uncertainty

10

Limits on $|sin(2\beta+\gamma)|$

Example 2 Le Brandel

- Limits on $|\sin(2\beta+\gamma)|$ with a frequentist approach
 - Minimize χ²(sin(2β + γ), δ, δ^{*}, r, r_{*}) computed from measured parameters in data with respect to sin(2β+γ), δ, δ^{*}, r, r
 - Generate toy experiments for all values of $sin(2\beta+\gamma)$
 - Confidence Level defined as $CL(|\sin(2\beta + \gamma)|) = fraction(\Delta \chi^2_{toy} < \Delta \chi^2_{data})$

Results from Partial Reconstruction with BaBar

Combined result : 2 r sin(2 β + γ) cos δ = -0.063 ± 0.024_{stat} ± 0.017_{syst}

Confidence level on $|\sin(2\beta+\gamma)|$ by minimizing $\chi^2(\sin(2\beta+\gamma),\delta)$

 $\begin{aligned} |\sin(2\beta + \gamma)| &> 0.88 \text{ at } 68.3\% \text{ C.L.} \\ |\sin(2\beta + \gamma)| &> 0.75 \text{ at } 90\% \text{ C.L.} \\ |\sin(2\beta + \gamma)| &> 0.62 \text{ at } 95\% \text{ C.L.} \\ |\sin(2\beta + \gamma)| &= 0 \text{ excluded at } 98.3\% \text{ C.L.} \end{aligned}$

Shahram Rahatlou

140 fb⁻¹

$D^{(*)}\pi$ Results from Belle

Same technique used in BaBar

Decay mode	Candidates	Purity
$B^0(\bar{B}^0) \to D^*\pi$	7556	95%
$B^0(ar B^0) o D\pi$	8375	88%

 $\begin{aligned} &2r_{D^*\pi}\sin(2\beta+\gamma+\delta_{D^*\pi})=0.092\pm0.059\pm0.016\pm0.036(D^*l\nu)\\ &2r_{D^*\pi}\sin(2\beta+\gamma-\delta_{D^*\pi})=0.033\pm0.056\pm0.016\pm0.036(D^*l\nu)\\ &2r_{D\pi}\sin(2\beta+\gamma+\delta_{D\pi})=0.094\pm0.059\pm0.013\pm0.036(D^*l\nu)\\ &2r_{D^*\pi}\sin(2\beta+\gamma-\delta_{D^*\pi})=0.022\pm0.056\pm0.013\pm0.036(D^*l\nu)\end{aligned}$

v Systematic on possible bias from D*Iv sample (no tagside effect)

hep-ex/0308048

$$A_{\rm OF} \equiv \frac{\Gamma(B^0 \to D^{(*)+}\pi^-) - \Gamma(B^0 \to D^{(*)-}\pi^+)}{\Gamma(\bar{B}^0 \to D^{(*)+}\pi^-) + \Gamma(B^0 \to D^{(*)-}\pi^+)}$$
$$A_{\rm SF} \equiv \frac{\Gamma(\bar{B}^0 \to D^{(*)-}\pi^+) - \Gamma(B^0 \to D^{(*)+}\pi^-)}{\Gamma(\bar{B}^0 \to D^{(*)-}\pi^+) + \Gamma(B^0 \to D^{(*)+}\pi^-)}.$$

large errors

Constraints on Unitarity Triangle from BaBar Results

Preference for one solution of β in the $\eta > 0$ plane

Measurement and Constraints on γ

with $B \rightarrow D^{(*)}K^{(*)}$ Decays

γ with $B^- \rightarrow D^0 K^-$ decays

- Many proposed methods with a variety of decay modes
 - Gronau-Wyler-London (GWL) method: use flavor and CP final states of D⁰

Gronau, Wyler, Phys Rev Lett **B265**, 172 (1991) Gronau, London Gronau, Phys Rev **D58**, 037301 (1998)

- Atwood-Dunietz-Soni (ADS):
 - Interference of $A(B^+ \rightarrow [f] K^+)$ and $A(B^+ \rightarrow [\overline{f}] K^+)$ with $BF(\overline{D}^0 \rightarrow [f]) << BF(D^0 \rightarrow [f])$

D. Atwood, I. Dunietz, A. Soni, Phys Rev Lett D58, 3257 (1997)

Gronau-Wyler method in $B^- \rightarrow D^0 K^-$ decays

- $A(B^+ \rightarrow D^0 K^+)$ can not be measured in hadronic decays
 - Comparable amplitude from $B^+ \rightarrow \overline{D}^0 K^+$ followed by Cabibbo-suppressed decay of \overline{D}^0

$$B^+ \to D^0 K^-$$
$$\downarrow_{K^- \pi^+}$$

$$B^+ o \overline{D}^0 K^-$$

 $\downarrow K^- \pi^+$

Shahram Rahatlou

Constraints on γ from $B^- \rightarrow D^0_{CP}K^-$ decays

- Constraints on r and γ from measurement of $R_{CP} = \frac{BR(B^- \to D_{CP}^0 \ K^-) + BR(B^+ \to D_{CP}^0 \ K^+)}{BR(B^- \to D^0 \ K^-) + BR(B^+ \to D^0 \ K^+)}$ Gronau, hep-ph/0211282 $r \ge |R_{CP+} - R_{CP-}|$
- Can be further refined by measuring direct CP violating asymmetry A_{CP}

$$A_{CP\pm} = \frac{Br(B^- \to D_{CP\pm}^0 K^-) - Br(B^+ \to D_{CP\pm}^0 K^+)}{Br(B^- \to D_{CP\pm}^0 K^-) + Br(B^+ \to D_{CP\pm}^0 K^+)} = \frac{\pm 2r \sin \delta \sin \gamma}{1 \pm 2r \cos \delta \cos \gamma + r^2}$$

$$A_{CP\pm} R_{CP\pm} = \pm 2r \sin \delta \sin \gamma \qquad \qquad \begin{array}{l} A(B^+ \to \overline{D}^0 K^+) = |A| \\ A(B^+ \to D^0 K^+) = |\overline{A}| e^{i\delta} e^{i\gamma} \end{array}$$

 $\boldsymbol{\delta}$ is the strong phase

Measure A_{CP} and BR with D⁰ \rightarrow K⁺K⁻, $\pi^{+}\pi^{-}$ (CP=+1) Belle BaBar D⁰ \rightarrow Ks $\pi^{0}\rho^{0}$, ϕ , ω , η , η ' (CP=-1) Belle

$B^- \rightarrow D^0_{\ CP} K^-$ decays with Belle and BaBar

$$\frac{BR(B^{-} \to D_{CP}^{\circ} K^{-}) + BR(B^{+} \to D_{CP}^{\circ} K^{+})}{BR(B^{-} \to D_{CP}^{\circ} \pi^{-}) + BR(B^{+} \to D_{CP}^{\circ} \pi^{+})} = 7.4 \pm 1.7 \pm 0.6\%$$

 $\frac{BR(B^{-} \to D_{CP}^{0} K^{-}) + BR(B^{+} \to D_{CP}^{0} K^{+})}{BR(B^{-} \to D_{CP}^{0} \pi^{-}) + BR(B^{+} \to D_{CP}^{0} \pi^{+})} = 12.9 \pm 4.0^{+1.1}_{-1.5}\%$

hep-ex/0304032

See Sanjay Swain's talk in Session 8, Wednesday @ 16:15

$B^- \rightarrow D^0_{CP} K^{*-}$ Branching Fractions with Belle

First measurement of these modes!

WIN03

^{80 fb⁻¹} $B^- \rightarrow D^{*0}K^{*-}$ Branching Fractions from BaBar

 Test of Factorization from polarization measurement

Factorization prediction: $\Gamma_L/\Gamma\approx$ 90% for 1st diagram

 $\Gamma_{\rm L}/\Gamma = 0.86 \pm 0.06 \text{ (stat)} \pm 0.03 \text{ (syst)}$

Summary of Measured Asymmetries

$$\sin^2 \gamma \le R_{CP\pm} \qquad A_{CP\pm} R_{CP\pm} = \pm 2r \sin \delta \sin \gamma$$

	. F							
В	$\rightarrow D_{CP}K$		$R_{CP=+1}$	$A_{CP=+1}$	R _{CP=-1}	A _{CP=-1}		
	BELLE	Belle	1.21 ±0.25 ±0.14	$0.06 \pm 0.19 \pm 0.04$	$1.41 \pm 0.27 \pm 0.15$	-0.19 ±0.17 ±0.05		
		BaBar	$1.06 \pm 0.26 \pm 0.17$	$0.17 \pm 0.23 \pm 0.08$				

P^- , $D^0 V^{*-}$						
$D \rightarrow D$	CP	BF(10 ⁻⁴)	$R_{CP=+1}$	A _{CP=+1}	$R_{CP=-1}$	A _{CP=-1}
	Belle	5.2 ±0.5 ±0.6		-0.02 ±0.33 ±0.07		$0.19 \pm 0.50 \pm 0.04$

- Errors still large to put significant limits on γ
 - Add as many more as possible: many drops in the bucket
 - Measure all sides of the 2 triangles
- A good measurement of r required
- Assuming r~0.2 and using 1σ uncertainties: $\gamma > 72^{\circ}$

Similar to D(*)π: interference between decay and mixing, but...

- Advantages:
 - Much larger asymmetries:
 - CP violation from tag-side not significant
- Disadvantages:
 - Color suppressed decays: Smaller branching fractions
 - Possible competing effects from Doubly-Cabibbo-suppressed D⁰ decays
 - Requires tagging for time-dependent studies: 70% tagging efficiency

WIN03

Shahram Rahatlou

23

Strong phase difference

 $r = \left| \frac{A(B^{0} \to D^{0} K^{(*)0})}{A(B^{0} \to \overline{D}^{0} K^{(*)0})} \right| = \left| \frac{V_{ub} V_{cs}^{*}}{V_{cb} V_{us}^{*}} \right| \sim 0.4$

Measure r with $K^{*0} \rightarrow K^{-}\pi^{+}$

Current measurements and limits in $B^0\!\!\rightarrow \bar{D}^{(*)0}K^{(*)0}$

 V_{ub} contribution necessary for measurement of γ not observed yet!

 V_{ub}

 $3.0 \pm 1.3 \pm 0.6$

 $3.4 \pm 1.3 \pm 0.6$

 $B^0 \rightarrow D^{\circ}K^{*0}$

 $B^0 \rightarrow \overline{D}^{\circ} K^0$

 $4.8 \pm 1.1 \pm 0.5$

 $5.0 \pm 1.3 \pm 0.6$

Shahram Rahatlou

<1.8 (90% c.l.)

<4.0 (90% c.l.)

 $B^0 \rightarrow D^{\circ}K^{*0}$

 $B^0 \rightarrow D^{*_0}K^{*_0}$

Measurement and Constraints on γ

with Charmless B Decays

γ in Charmless B \rightarrow PP,PV decays

$$A(B \to f) = \left(|P| e^{i\delta} + |T| e^{+i\gamma} \right)$$
$$\overline{A}(\overline{B} \to \overline{f}) = \left(|P| e^{i\delta} + |T| e^{-i\gamma} \right)$$

Possible window on New Physics

- Tree amplitude suppressed in Standard Model
 - Penguin contributions large:

$$\frac{B \to K\pi}{B \to \pi\pi} \approx 4 \quad \longleftarrow \quad 5\% \text{ if neglecting penguins}$$

Interference between Tree and Penguin

Branching fractions and CP asymmetries sensitive to γ

- Main Challenges
 - Background suppression
 - Contribution of EW penguins
 - Effects of Final State Interaction
 - Requires estimate of |P/T|

$$BF \propto 1 + 2 \left| \frac{P}{T} \right| \cos \delta \cos \gamma + \left| \frac{P}{T} \right|^2$$
$$A_{CP} = -2 \left| \frac{P}{T} \right| \sin \delta \sin \gamma$$

A_{CP} alone not sufficient

Need also BF to have a handle on δ

Shahram Rahatlou

d.s

Status of $B \rightarrow K\pi$ BF and A_{CP} measurements

Constraints on γ with current measurements

- Gronau-Rosner Method:
 - Measu

• Measure
$$A_{CP}$$
 and BF
 $R_{c,n} = 1 - 2r_{c,n}(\cos \gamma - \delta_{EW})\cos \delta_{c,n} + (1 - 2\delta_{EW}\cos \gamma + \delta_{EW}^2)r_{c,n}^2$
 $A_0^{c,n} = 2r_{c,n}\sin \delta_{c,n}\sin \gamma$
 $\left\{\frac{R_c}{A_0^c}\right\} = 2\left[\frac{Br(B^+ \to K^+\pi^0) \pm Br(B^- \to K^-\pi^0)}{Br(B^+ \to K^0\pi^+) + Br(B^- \to \overline{K}^0\pi^-)}\right]$
 $\left\{\frac{R_n}{A_0^n}\right\} = \frac{1}{2}\left[\frac{Br(B^0 \to K^+\pi^-) \pm Br(\overline{B}^0 \to K^-\pi^+)}{Br(B^0 \to K^0\pi^0) + Br(\overline{B}^0 \to \overline{K}^0\pi^0)}\right]$

- Eliminate strong phase $\delta_{c,n} \rightarrow R_{c,n} = R_{c,n} (A_{c,n},\gamma)$
 - Constraint on γ from experimental error on R_{c,n} and A_{c,n}

- No strong constraint yet: in agreement with CKM fitter constraints
- QCD Factorization: See M. Neubert's talk later in this session
- Constraints also from Fleischer and Mannel

Shahram Rahatlou

hep-ph/0307095

Example of Constraint on γ

Summary and Outlook

- Different families of B decays offer observables sensitive to γ
 - No single "Golden" mode for a precise and clean measurement
 - Typical pattern: abundant modes with small CP-violating amplitudes and viceversa
- First limits on $|\sin(2\beta+\gamma)|$ with time-dependent analysis of $D^*\pi$
 - Use SU(3) symmetry to estimate |A(V_{ub})/A(V_{cb})|
- Many $B \rightarrow D^{(*)}K^{(*)}$ modes under study at B factories
 - Larger data samples needed for precise measurements of branching fractions
 - γ can be measured with GWL, ADS and time-dependent analyses
- Progress in charmless $B \rightarrow PP, PV$ decay modes
 - More branching fractions and CP asymmetries now measured
 - SU(3) symmetry and QCD Factorization approaches combining all measurements
 - Limits compatible with γ values from CKM fitter

30