19th International Workshop on Weak Interactions and Neutrinos Lake Geneva, 6-11 October 2003

Exclusive Semileptonic B decays at BaBar

Marcello Rotondo Universita' di Padova & INFN

BaBar Collaboration

WIN 2003, Lake Geneva

Outline

How to measure $|V_{cb}| \& |V_{ub}|$?

$|V_{cb}|$ with $B \rightarrow D^* l v$ decay

Exclusive |V_{cb}|: extrapolation to w=1

•
$$\mathcal{F}(w) = \mathcal{F}(1)(1 + \rho^2(w-1) + c(w-1)^2 + O(w-1)^3)$$

Dispersion relations: constraints to the shape $[c=f(\rho^2)]$ ٠

Boyd Grinstein Lellouch Phys. Rev. D56 Caprini Lellouch Nebert Nucl. Phys. B530

$$\frac{d\Gamma}{dw} \ll \left[V_{cb} \right]^{2} A_{1}^{2}(w) \left\{ 2 \frac{1 - 2wr + r^{2}}{(1 - r)^{2}} \left[1 + \frac{w - 1}{w + 1} R_{1}(w)^{2} \right] + \left[1 + \frac{w - 1}{1 - r} (1 - R_{2}(w)) \right]^{2} \right\}$$
$$A_{1}(w) = A_{1}(1) \left[1 - 8\rho_{A_{1}}^{2} z + (53\rho_{A_{1}}^{2} - 15)z^{2} - (231\rho_{A_{1}}^{2} - 91)z^{3} \right] \quad z = \frac{\sqrt{w + 1} - \sqrt{2}}{\sqrt{w + 1} + \sqrt{2}}$$

FIT: 2 free parameters $\mathcal{F}(1)|V_{cb}|$ & ρ_A^2 strongly correlated

QCD sum rules \rightarrow R1 & R2 shapes $R_2(\omega) \approx 0.80 \pm 0.11(\omega - 1) - 0.06(\omega - 1)^2$ $R_1(\omega) \approx 1.27 - 0.12(\omega - 1) + 0.05(\omega - 1)^2$ CLEO measurements at w=1 Most important source of $R_1(1)=1.18\pm0.30\pm0.12$ $R_2(1)=0.71\pm0.22\pm0.07$

systematic error on ρ_A^2

Exclusive $|V_{cb}|$: B⁰ \rightarrow D^{*-}*l*+v sample

Peaking background evaluation: D** & Uncorr.

Exclusive |V_{cb}|: dN/dw fit results

Exclusive $|V_{cb}|$: comparison of $F(1)|V_{cb}|$

Exclusive $B^{+/0} \rightarrow \rho^{0/+} l^- v$ decays: selection

- $B \rightarrow \rho^{\pm} l \nu$, $B \rightarrow \rho^{0} l \nu$, $B \rightarrow \omega l \nu$
- Neutrino reconstruction
 - Require hermeticity

Analysis optimized for $\rho^{\pm} l \nu$

$$\vec{p}_{\rm miss} = -\sum_{\rm tracks} \vec{p}_i - \sum_{\rm photons} \vec{p}_i$$

- Extraction of the Yields:
 - Fit the M_ $\pi\pi(\pi)$ vs ΔE (=E_{had}+E_e+E_v-E_{beam}) in **2 coarse bin of p**_l
 - High efficiency but sensitivity in the region p_l>2.3GeV/c
- Isospin/quark-model constraints:

$$\Gamma(\mathsf{B}^{0}\to\rho^{-})=2\Gamma(\mathsf{B}^{+}\to\rho^{0})$$
$$\sim 2\Gamma(\mathsf{B}^{+}\to\omega)$$

Exclusive $B^{+/0} \rightarrow \rho^{0/+} l^- v$ decays

Continuum subtracted plots Continuum is the larghest source of background

WIN 2003, Lake Geneva

Exclusive B⁺ $\rightarrow \pi^{0}, \rho^{0}, \omega l \nu$ decays

B recoil technique: as in inclusive V_{ub} analysis

- Small statistics
- Very high purity
- Loose cuts
 - \rightarrow small model dependence

 $\begin{cases} \mathcal{B} (B^+ \to \pi^0 l^+ \nu) = (0.78 \pm 0.32_{stat} \pm 0.13_{syst}) \cdot 10^{-4} \\ \mathcal{B} (B^+ \to "\rho^0 "l^+ \nu) = (0.99 \pm 0.37_{stat} \pm 0.19_{syst}) \cdot 10^{-4} \\ \mathcal{B} (B^+ \to \omega l^+ \nu) = (2.20 \pm 0.92_{stat} \pm 0.57_{syst}) \cdot 10^{-4} \end{cases}$

Projection of the results on the Mx variable

• $|V_{cb}|$ via differential analysis with B⁰->D*lv

 $BR(B^{0} \rightarrow D^{*}lv) = (4.69 \pm 0.02 \pm 0.24)\%$ $\mathcal{F}(1)|V_{cb}| = (34.03 \pm 0.24_{stat} \pm 1.31_{syst}) \times 10^{-3}$

 $|Vcb|=(37.27 \pm 0.26_{stat} \pm 1.43_{syst-1.20 F(1)}) \times 10^{-3}$

Preliminary result $hep - e\chi / 0308027$ $f(1) = 0.913_{-0.035}^{+0.030}$ Lattice QCD

- Experimental error O(4%)
- Very large sample
 - Small statistical error
 - Background constrained from Data

Summary II: V_{ub}

• $|V_{ub}|$ analysis with $B \rightarrow \rho^{\pm} l v$ experimental error 9%

$$BR(B \rightarrow \rho^{\pm} l \nu) = (3.29 \pm 0.42 \pm 0.47 \pm 0.60) \times 10^{-4}$$

$$|V_{ub}| = (3.64 \pm 0.22 \pm 0.25 + .39) \times 10^{-3}$$

BR of many charmless semileptonic B decays with fully reconstructed events

$$\begin{cases} \mathcal{B} (B^+ \to \pi^0 l^+ \vee) = (0.78 \pm 0.32_{stat} \pm 0.13_{syst}) \cdot 10^{-4} \\ \mathcal{B} (B^+ \to "\rho^0 l^+ \vee) = (0.99 \pm 0.37_{stat} \pm 0.19_{syst}) \cdot 10^{-4} \\ \mathcal{B} (B^+ \to \omega l^+ \vee) = (2.20 \pm 0.92_{stat} \pm 0.57_{syst}) \cdot 10^{-4} \end{cases}$$

Preliminary result LP03

PRL.90:181801

- Working on converting BR in V_{ub}
- Promising with the increase of the luminosity

Backup slides

$B^0 \rightarrow D^{*-}l^+v$: reconstruction of w

$B^0 \rightarrow D^{*-} l^+ v$: selection cuts

- Lepton Candidates from GoodTrackList
 - Plep>1.2GeV/c
 - PID: veryTight selector
- D⁰ tracks from GoodTrackLoose: 12 hits in the DCH
 - Kaon: not a Pion for Kpi, Tight for Kpipi0 and K3pi
- Pi soft:
 - $-~p_{\pi\,soft} < 450~MeV$ and $p_{\pi\,soft}^{t} > 50~MeV$
- D* candidate
 - Vertex fit $\chi^2 > 1\%$
 - 144 MeV < δ M < 147 MeV (SVT+DCH)
 - 143 MeV < δ M < 148 MeV (SVT only)
- $\cos \theta_{D^*l} < 0$ (Opposite Side sample)
- |cosθ_{B,Y}|<1.2

$B^0 \rightarrow D^{*-}l^+\nu$: D^{**} systematic errors

B decay mode	$\begin{array}{c} \mathrm{B} \\ imes 10^{-2} \end{array}$	Model	D^{**} decay	B	$\begin{array}{c} \text{Overall BR} \\ \times 10^{-4} \end{array}$
$B^0 \rightarrow D^{*-} \pi^0 \ell^+ \nu_\ell$	0.10	GR	-	-	10.
$B^0 \rightarrow D_1^- \ell^+ \nu_\ell$	0.56	ISGW2	$D_1^- \rightarrow D^{*-} \pi^0$	0.33	18.5
$B^0 \rightarrow D_1^{*-} \ell^+ \nu_\ell$	0.37	ISGW2	$D_1^{*-} \rightarrow D^{*-} \pi^0$	0.33	12.2
$B^0 \rightarrow D_2^{*-} \ell^+ \nu_\ell$	0.37	ISGW2	$D_2^{*-} \to D^{*-} \pi^0$	0.103	3.81
$B^0 ightarrow D^{\prime -} \ell^+ \nu_\ell$	0.02	ISGW2	$D^{\prime -} \rightarrow D^{*-} \pi^0$	0.33	0.67
$B^0 ightarrow D^{*\prime -} \ell^+ u_\ell$	0.22	ISGW2	$D^{*\prime-} \rightarrow D^{*-} \pi^0$	0.17	3.74
$B^+ \rightarrow D^{*-} \pi^+ \ell^+ \nu_\ell$	0.20	GR	-	-	20.
$B^+ \rightarrow D_1^0 \ell^+ \nu_\ell$	0.56	ISGW2	$D_1^0 \to D^{*-} \pi^+$	0.67	37.5
$B^+ \rightarrow D_1^{*0} \ell^+ \nu_\ell$	0.37	ISGW2	$D_1^{*0} \to D^{*-} \pi^+$	0.67	24.8
$B^+ \rightarrow D_2^{*0} \ell^+ \nu_\ell$	0.37	ISGW2	$D_2^{*0} \to D^{*-} \pi^+$	0.21	7.78
$B^+ \rightarrow D^{\prime 0} \ell^+ \nu_{\ell}$	0.02	ISGW2	$D^{\prime 0} \rightarrow D^{*-} \pi^+$	0.67	1.32
$B^+ \rightarrow D^{*\prime 0} \ell^+ \nu_{\ell}$	0.22	ISGW2	$D^{*\prime0} \rightarrow D^{*-}\pi^+$	0.33	7.26

Systematic error:

assuming only one mode a time;

repeat the cosBY and w fit: half the max and min values of the parameters

