Recent results on Rare Kaon Decays by the NA48 experiment at CERN

Edoardo Mazzucato
CEA-Saclay, DAPNIA/SPP

WIN’03 Workshop, Lake Geneva, WI, U.S.A.
October 6th - 11th, 2003

On behalf of the NA48 Collaboration:
Cagliari-Cambridge-CERN-Chicago-Dubna-Edinburgh-Ferrara-Firenze-Mainz-
Northwestern-Orsay-Perugia-Pisa-Saclay-Siegen-Torino-Vienna-Warsaw
NA48 Detector and Neutral Kaon Beam Lines

- $K_S \rightarrow \pi^0 e^+ e^-$
- $K_S \rightarrow \pi^0 \pi^0 \pi^0$
- $K_S \rightarrow \pi^0 \gamma \gamma$
- $K_S \rightarrow \gamma \gamma$
- $K_L,S \rightarrow \pi^+ \pi^- e^+ e^-$

Charged Kaon Decays

Summary and Outlook
The NA48 Detector

Two main components:

✦ Magnetic Spectrometer*

\[\frac{\sigma_P}{P} \simeq 0.5\% \oplus 0.009\% P(\text{GeV/c}) \]

✦ LKr Electromagnetic Calorimeter

\[\frac{\sigma_E}{E} \simeq \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.42\% \ (E \text{ in GeV}) \]

* unavailable in 2000

October 6th - 11th, 2003
WIN'03 Workshop, Lake Geneva, WI, U.S.A.
Recent results on Rare Kaon Decays by the NA48 experiment at CERN (page 3)
Edoardo Mazzucato
CEA-Saclay, DAPNIA/SPP
The K_L and K_S beam lines

October 6th - 11th, 2003

Recent results on Rare Kaon Decays by the NA48 experiment at CERN (page 4)

Edoardo Mazzucato
CEA-Saclay, DAPNIA/SPP
$K_S \rightarrow \pi^0 e^+ e^-$
A measurement of the $K_S \to \pi^0 e^+ e^-$ decay allows to improve SM predictions of the CP violating part of the $K_L \to \pi^0 e^+ e^-$ decay rate...

The $K_L \to \pi^0 e^+ e^-$ decay amplitude has three components:

- **CP conserving**
 - dominated by the two-photon process $K_L \to \pi^0 \gamma^* \gamma^*$
 - can be obtained from the low $m_{\gamma \gamma}$ tail in $K_L \to \pi^0 \gamma \gamma$
 - **NA48**: $\text{BR}(K_L \to \pi^0 e^+ e^-)_{\text{CPC}} = 0.47^{+0.22}_{-0.18} \times 10^{-12}$

- **Direct CP violating**
 - probe of short-distance effects
 - amplitude proportional to $\text{Im}(\lambda_t) = \text{Im}(V_{ts}^* V_{td})$
 - expected $\text{BR}(K_L \to \pi^0 e^+ e^-)_{\text{CPVdir}} \approx 2 - 3 \times 10^{-12}$

- **Indirect CP violating**
 - $\text{BR}(K_L \to \pi^0 e^+ e^-)_{\text{CPVind}} = \frac{\tau_L}{\tau_S} |\varepsilon|^2 \text{BR}(K_S \to \pi^0 e^+ e^-)$
Interference between direct and indirect CP violation amplitudes in the $K_L \to \pi^0 e^+ e^-$ decay can give rise to sizeable effects...

✦ Theoretical predictions:

$$\text{BR}(K_L \to \pi^0 e^+ e^-)_{\text{CPV}} \times 10^{12} = 15.3 \ a_S^2 - 6.8 \left(\frac{\text{Im}(\lambda_t)}{10^{-4}} \right) a_S + 2.8 \left(\frac{\text{Im}(\lambda_t)}{10^{-4}} \right)^2$$
$$\text{BR}(K_S \to \pi^0 e^+ e^-) \times 10^9 = 5.2 \ a_S^2 \quad \text{with} \ a_S \sim O(1)$$

✦ Experimental published limits (@ 90% CL):

$$\text{BR}(K_L \to \pi^0 e^+ e^-) < 5.1 \times 10^{-10} \quad \text{KTeV} \ [\text{PRL 86 (2001) 397}]$$
$$\text{BR}(K_S \to \pi^0 e^+ e^-) < 1.4 \times 10^{-7} \quad \text{NA48} \ [\text{PLB 514 (2001) 253}]$$

NA48/1 measures both $K_S \to \pi^0 e^+ e^-$ and $K_S \to \pi^0 \mu^+ \mu^-$ modes (2002 data)...

Theory: \(\frac{\text{BR}(K_S \to \pi^0 \mu^+ \mu^-)}{\text{BR}(K_S \to \pi^0 e^+ e^-)} \simeq 0.23 \) in the VDM framework [AEIP]

* See also G. Buchalla, G. D’Ambrosio and G. Isidori, hep-ph/0308008 [BDI]
$K_S \rightarrow \pi^0 e^+ e^-$

2002 High Intensity K_S run...

- 5×10^{10} p/spill (@ 400 GeV/c)
- spill: 4.8 s every 16.2 s
- 4.2 mrad production angle
- 4×10^{10} K_S decays in 89 days
- modified K_S target+collimator region
- LKr and DCH read-out upgraded
- 50 K events/spill
- 40 Tbytes data volume

Trigger efficiency $> 99\%$ measured with $K_S \rightarrow \pi^0 \pi^0_D$ reconstructed decays.
$K_S \rightarrow \pi^0 e^+ e^-$

Event selection
- Select candidates with $40 < E_K < 240$ GeV and $\tau < 2.5 \tau_S$ of final collimator
- 4 in-time clusters in LKr with 2 tracks forming one good e^+e^- vertex
- Particle id.: $|E/P - 1| < 0.05$ and no signal in μVETO or HAC
- Energy COG at LKr < 6 cm from beam axis
- No extra in-time track or cluster
- $m_{ee\gamma\gamma}: m_K \pm 2.5 \sigma_{m_K}$ assuming $\gamma\gamma$ pair originates from charged vertex
- $m_{\gamma\gamma}: m_{\pi^0} \pm 2.5 \sigma_{m_{\pi^0}}$ assuming $\gamma\gamma$ pair originates from vertex imposing m_K
 \[(\sigma_{m_K} = 4.6 \text{MeV/c}^2 \text{ and } \sigma_{m_{\pi^0}} = 1.0 \text{MeV/c}^2) \]

Background sources:
- $K_S \rightarrow \pi^0 \pi_D^0, \pi^0 \pi_D^0 + \text{conversion(s)}$, $\pi^0 \pi_D^0 \pi_D^0$, $\pi^0 \pi_D^0 (ee)$, $\pi_D^0 \pi_D^0$
- $K_L \rightarrow ee\gamma\gamma$, $ee\gamma + \text{bremsstrahlung}$, $\pi^0 \pi^+ \pi^-$, $\pi^0 \pi^0 \pm e^\pm \nu$
- $\Xi^0 \rightarrow \Lambda(p\pi^-)\pi^0$, $\Lambda(p\nu)e^-\nu$, $\Sigma^+(p\pi^0)e^-\nu$
- **Accidental activity**: $\phi(K_SK_L)$, $K_L + K_S$ from different proton interactions

Perform blind analysis ... Keep expected background level in signal region small!

Signal region: $2.5 \sigma_{m_K} \times 2.5 \sigma_{m_{\pi^0}}$
Control region: $6.0 \sigma_{m_K} \times 6.0 \sigma_{m_{\pi^0}}$
Reject huge $K_S \to \pi^0 \pi_0^0 (e^+e^-\gamma)$ background (3×10^8 in $0 < \tau < 2.5\tau_S$):

- $d_{ee}^{DCH1} > 2$ cm to reject events with small θ_{ee}
- $m_{ee} > .165$ GeV/c2 (30 $\sigma_{m_{\pi_0}}$ above m_{π_0})
Background from $K_S \rightarrow \pi^0\pi^0_D, \pi^0\pi^0_{DD}, \pi^0\pi^0(ee), \gamma$ conversions ...
\[K_S \rightarrow \pi^0 e^+ e^- \]

Like-sign \(e^+ e^+ \) or \(e^- e^- \) pairs ...

No event observed in signal and control regions ...

October 6th - 11th, 2003
WIN'03 Workshop, Lake Geneva, WI, U.S.A.
Recent results on Rare Kaon Decays
by the NA48 experiment at CERN (page 12)

Edoardo Mazzucato
CEA-Saclay, DAPNIA/SPP
Background from $K_S \rightarrow \pi^0 \pi^0$...

Require $(m_{e\gamma}, m_{e\gamma}) > 0.165$ GeV/c2 to reject low-energy e^+, e^- escaping detection $\implies (m_{e\gamma}, m_{e\gamma}) \sim (m_{\pi^0}, m_{\pi^0})$ when $m_{ee\gamma} \sim m_K$

No event found in signal region from MC sample $\sim 30 \times 2002$ statistics (1 event in control region) ...
Background from $K_{L,S} \rightarrow e^+e^-\gamma\gamma$...

Estimated from $K_L \rightarrow e^+e^-\gamma\gamma$ decays with 2001 data
($\sim 10 \times 2002$ expected $e^+e^-\gamma\gamma$ statistics)

Background in the signal region: $0.08^{+0.03}_{-0.02}$ event ...
\[K_S \rightarrow \pi^0 e^+ e^- \]

Accidental activity ...

Estimated from events in \((\Delta t = |t_{ee} - t_{\gamma\gamma}|)\) time sidebands

Background in the signal region: \(0.07^{+0.07}_{-0.03}\) event ...
Summary of the most significant background contributions ...

<table>
<thead>
<tr>
<th>Background source</th>
<th>Control region</th>
<th>Signal region</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_S \to \pi^0\pi^0_D$</td>
<td>0.03</td>
<td>< 0.01</td>
</tr>
<tr>
<td>$K_L \to ee\gamma\gamma$</td>
<td>0.11</td>
<td>0.08$^{+0.03}_{-0.02}$</td>
</tr>
<tr>
<td>Accidentals</td>
<td>0.19</td>
<td>0.07$^{+0.07}_{-0.03}$</td>
</tr>
<tr>
<td>Total</td>
<td>0.33</td>
<td>0.15$^{+0.10}_{-0.04}$</td>
</tr>
</tbody>
</table>

All other investigated sources of background were found to be negligible (e.g. $K_S \to \pi^0\pi^0_D$, Ξ^0 decays, $K_L \to \pi^+\pi^-\pi^0$, ϕ decays, etc.).

Control and signal regions remained masked until the study of the background was completed ...
Unmasking control and signal regions ...

7 events in signal region (bkg.=0.15) and 0 in control region (bkg.=0.33)

Probability that all 7 events are background is $\sim 10^{-10}$

\Longrightarrow First observation of the decay $K_S \rightarrow \pi^0 e^+ e^-$
Recent results on Rare Kaon Decays by the NA48 experiment at CERN (page 18)

Edoardo Mazzucato
CEA-Saclay, DAPNIA/SPP

October 6th - 11th, 2003
WIN’03 Workshop, Lake Geneva, WI, U.S.A.
$K_S \rightarrow \pi^0 e^+ e^-$

Decay amplitude from χPT model of AEIP (vector interaction + FF)

![Graph showing decay amplitude](Image)

$N_{\pi^0ee} = 6.85^{+3.8}_{-1.8}$ K_S flux = $(3.51 \pm 0.17) \times 10^{10}$ (from $K_S \rightarrow \pi^0\pi^0_D$ decays)

Acceptance (no FF) = $(6.6 \pm 0.4)\%$

$\text{BR}(K_S \rightarrow \pi^0 e^+ e^-, m_{ee} > 0.165 \text{ GeV/c}^2) = (3.0^{+1.5}_{-1.2}\text{ stat} \pm 0.2\text{ syst}) \times 10^{-9}$

$\text{BR}(K_S \rightarrow \pi^0 e^+ e^-) = (5.8^{+2.8}_{-2.3}\text{ stat} \pm 0.8\text{ syst}) \times 10^{-9}$

$\Rightarrow |a_S| = 1.06^{+0.26}_{-0.21}\text{ stat} \pm 0.07\text{ syst}$
Sensitivity of $BR(K_L \rightarrow \pi^0 e^+ e^-)$ to $\text{Im}(\lambda_t)$...

\[BR(K_L \rightarrow \pi^0 e^+ e^-)_{\text{CPV}} \simeq (17.2_{\text{indirect}} \pm 9.4_{\text{interference}} + 4.7_{\text{direct}}) \times 10^{-12} \]

$\text{Im}(\lambda_t) = (1.30 \pm 0.12) \times 10^{-4}$ [S.H. Kettell, L.G. Landsberg and H. Nguyen, hep-ph/0212321]

If a_S is negative then $BR(K_L \rightarrow \pi^0 e^+ e^-)$ retains some sensitivity to $\text{Im}(\lambda_t)$ through the interference term ...

\textit{A measurement of }$BR(K_S \rightarrow \pi^0 \mu^+ \mu^-)$ \textit{by NA48/1 will come soon!}
$K_S \rightarrow \pi^0\pi^0\pi^0$
\[K_S \rightarrow \pi^0 \pi^0 \pi^0 \]

\[\eta_{000} = \frac{A(K_S \rightarrow \pi^0 \pi^0 \pi^0)}{A(K_L \rightarrow \pi^0 \pi^0 \pi^0)} \]

If CPT conserved: \[\eta_{000} = \varepsilon + i \frac{\text{Im}(A_1)}{\text{Re}(A_1)} \]

- **2000 NEAR target data**
 - \(5.9 \times 10^6 \) \(3\pi^0 \) events

- **2000 FAR target data**
 - \(1.3 \times 10^8 \) \(K_L \rightarrow 3\pi^0 \) decays
 - 1st order accept. corr.

- **Monte Carlo**
 - 2nd order accept. corr.

- **Analysis in energy bins**

\[f(E, t) = \frac{I_{3\pi^0}^{\text{NEAR}}}{I_{3\pi^0}^{\text{FAR}}} = A(E)[1 + |\eta_{000}|^2 e^{(\Gamma_L - \Gamma_S) t} + 2D(E) (\text{Re}(\eta_{000}) \cos \Delta m t - \text{Im}(\eta_{000}) \sin \Delta m t) e^{\frac{1}{2} (\Gamma_L - \Gamma_S) t}] \]

Fit parameters \(A(E), \text{Re}(\eta_{000}), \text{Im}(\eta_{000}) \)

\(D(E): K^0 - \overline{K^0} \) dilution (from NA31)
\[K_S \to \pi^0 \pi^0 \pi^0 \]

Extract Re(\(\eta_{000}\)) and Im(\(\eta_{000}\)) from a fit in energy bins:

\[(70 < E < 170 \text{ GeV})\]

\[
\text{Re}(\eta_{000}) = -0.026 \pm 0.010_{\text{stat}} \\
\text{Im}(\eta_{000}) = -0.034 \pm 0.010_{\text{stat}} \\
\rho = 0.78 \quad \chi^2/\text{ndf} = 415/405
\]

Systematics:

<table>
<thead>
<tr>
<th>Source</th>
<th>Re((\eta_{000}))</th>
<th>Im((\eta_{000}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance</td>
<td>± 0.003</td>
<td>± 0.003</td>
</tr>
<tr>
<td>Accid. activity</td>
<td>± 0.001</td>
<td>± 0.006</td>
</tr>
<tr>
<td>Energy scale</td>
<td>± 0.001</td>
<td>± 0.001</td>
</tr>
<tr>
<td>(K^0\bar{K}^0) dilution</td>
<td>± 0.003</td>
<td>± 0.004</td>
</tr>
<tr>
<td>Fit</td>
<td>± 0.001</td>
<td>± 0.002</td>
</tr>
<tr>
<td>Total</td>
<td>± 0.005</td>
<td>± 0.011</td>
</tr>
</tbody>
</table>

NA48 Preliminary Result:

\[
\text{Re}(\eta_{000}) = -0.026 \pm 0.010_{\text{stat}} \pm 0.005_{\text{syst}} \\
\text{Im}(\eta_{000}) = -0.034 \pm 0.010_{\text{stat}} \pm 0.011_{\text{syst}}
\]
$K_S \rightarrow \pi^0\pi^0\pi^0$

NA48 Preliminary Results

![Graph showing NA48 Preliminary Results](image_url)

- **CPLEAR (1998):**
 \[
 \text{Re}(\eta_{000}) = (18 \pm 14_{\text{stat}} \pm 6_{\text{syst}}) \times 10^{-2} \\
 \text{Im}(\eta_{000}) = (15 \pm 20_{\text{stat}} \pm 3_{\text{syst}}) \times 10^{-2} \\
 \text{Im}(\delta) = (2.4 \pm 5.0) \times 10^{-5}
 \]

- **SND (1999):**
 \[
 \text{BR}(K_S \rightarrow \pi^0\pi^0\pi^0) < 1.4 \times 10^{-5} \text{ 90\% CL}
 \]

- **CPT test (BS unitarity relation):**
 \[
 (1 + i \tan \phi_W) [\text{Re}(\varepsilon) - i \text{Im}(\delta)] = \sum_f \alpha_f
 \]

<table>
<thead>
<tr>
<th>α_f</th>
<th>$10^3 \times \text{Re}(\alpha_f)$</th>
<th>$10^3 \times \text{Im}(\alpha_f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{+-}</td>
<td>1.136±0.013</td>
<td>1.071±0.013</td>
</tr>
<tr>
<td>α_{00}</td>
<td>0.517±0.010</td>
<td>0.486±0.010</td>
</tr>
<tr>
<td>$\alpha_{+-\gamma}$</td>
<td>0.003±0.001</td>
<td>0.003±0.000</td>
</tr>
<tr>
<td>α_{13}</td>
<td>0.004±0.003</td>
<td>0.003±0.004</td>
</tr>
<tr>
<td>$\alpha_{+-\delta}$</td>
<td>0.000±0.002</td>
<td>0.000±0.004</td>
</tr>
<tr>
<td>α_{000}</td>
<td>0.029±0.040</td>
<td>-0.026±0.058</td>
</tr>
</tbody>
</table>

- **NA48:**
 \[
 \text{Re}(\alpha_{000}) = (-0.009 \pm 0.004) \times 10^{-3} \\
 \text{Im}(\alpha_{000}) = (0.012 \pm 0.005) \times 10^{-3} \\
 \Longrightarrow \text{Im}(\delta) = (-1.2 \pm 3.0) \times 10^{-5}
 \]

- **If CPT is conserved in the decay:**
 \[
 m_{K^0} - m_{\bar{K}^0} = (-1.7 \pm 4.2) \times 10^{-19} \text{ GeV/c}^2
 \]
$K_S \rightarrow \pi^0 \gamma \gamma$
$K_S \rightarrow \pi^0 \gamma \gamma$

• χPT predictions:
 - BR$(K_S \rightarrow \pi^0 \gamma \gamma)_{z>0.2} = 3.8 \times 10^{-8}$
 - total rate dominated by the π^0 pole
 - momentum dependent weak vertex

⇒ Chiral structure of the weak vertex can be tested from the shape of the $z = (m_{34}/m_K)^2$ distribution

• NA48/1:
 - 2000 NEAR target data
 - $K_S \rightarrow \pi^0 \pi^0$ decays as normalization

⇒ First observation of the $K_S \rightarrow \pi^0 \gamma \gamma$ decay
31 candidates observed in signal region

\[|m_{12} - m_{\pi^0}| < 2 \text{ MeV}/c^2 \text{ and } z > 0.2 \]

Background Events

<table>
<thead>
<tr>
<th>Process</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_L \rightarrow \pi^0\gamma\gamma)</td>
<td>3.8 ± 0.2</td>
</tr>
<tr>
<td>(K_S \rightarrow \pi^0\pi_D^0)</td>
<td>2.4 ± 1.2</td>
</tr>
<tr>
<td>Hadrons</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>Accidentals</td>
<td>6.8 ± 2.9</td>
</tr>
<tr>
<td>(K_S \rightarrow \pi^0e^+e^-)</td>
<td>0.6 ± 0.3</td>
</tr>
<tr>
<td>Total</td>
<td>13.7 ± 3.2</td>
</tr>
</tbody>
</table>

BR(\(K_S \rightarrow \pi^0\gamma\gamma \))_{z>0.2} = (4.9 \pm 1.6_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-8}

BR(\(K_S \rightarrow \pi^0\gamma\gamma \))_{z>0.2} = (4.9 \pm 1.8) \times 10^{-8}

in agreement with \(\chi PT \) ... but more statistics needed to check the chiral structure of the weak vertex ...
\[K_S \rightarrow \gamma\gamma \]
$K_S \rightarrow \gamma\gamma$

✧ χPT:

- Unambiguous and clean $O(p^4)$ prediction
- $\text{BR}(K_S \rightarrow \gamma\gamma) = 2.1 \times 10^{-6}$

 [G. D’Ambrosio and D. Espriu, PLB 175 (1986) 237]
 [J.L. Goity, ZPC 34 (1987) 341]

✧ NA48/1:

- 2000 NEAR target data (normalize to $K_S \rightarrow \pi^0\pi^0$ decays)
- Choose decays close to collimator exit to reject background from $K_S \rightarrow \pi^0\pi^0$ with only 2 showers in LKr calorimeter

 \[\Rightarrow \text{Reconstructed vertex moves downstream due to missing energy} \]

- 2000 FAR target data to measure $\frac{\text{BR}(K_L \rightarrow \gamma\gamma)}{\text{BR}(K_L \rightarrow 3\pi^0)}$ and to estimate the irreducible $K_L \rightarrow \gamma\gamma$ background:

 \[
 \frac{\text{BR}(K_L \rightarrow \gamma\gamma)}{\text{BR}(K_L \rightarrow 3\pi^0)} = (2.81 \pm 0.01_{\text{stat}} \pm 0.02_{\text{syst}}) \times 10^{-3}
 \]
$K_S \rightarrow \gamma\gamma$

$$\text{BR}(K_S \rightarrow \gamma\gamma) = (2.78 \pm 0.06_{\text{stat}} \pm 0.03_{\text{syst}} \pm 0.02_{\text{norm}}) \times 10^{-6}$$

- **NA48/1 result:**
 $$\text{BR}(K_S \rightarrow \gamma\gamma) = (2.78 \pm 0.07) \times 10^{-6}$$

- **Much more precise than previous measurements:**
 - NA48 (1999): $(2.58 \pm 0.42) \times 10^{-6}$
 - NA31: $(2.4 \pm 0.9) \times 10^{-6}$

- **Decay rate larger by 30% w.r.t. $O(p^4)$ prediction of χPT**

\Rightarrow **Indication of a large $O(p^6)$ contribution:**

$$\frac{8m_K^2}{p_\pi^2} \alpha_1 = 1.0 \pm 0.3 \ [\text{BDI}]$$

7461 ± 172 $K_S \rightarrow \gamma\gamma$ decays
\[K_{L,S} \rightarrow \pi^+ \pi^- e^+ e^- \]
\[K_{L,S} \rightarrow \pi^+\pi^-e^+e^- \]

\[\bullet \quad K_L \rightarrow \pi^+\pi^-e^+e^- \]

The interference between the dominant M1 (CP=-1) and IB (CP=+1) components gives rise to a large CP-violating asymmetry \(A_\phi \sim 14\% \) in the \(\phi \) distribution between the \(\pi^+\pi^- \) and \(e^+e^- \) planes in the kaon c.m.

\[\bullet \quad K_S \rightarrow \pi^+\pi^-e^+e^- \]

Mainly due to IB ... no such asymmetry expected ...

1998+1999 NA48 data

\[A_\phi = (14.2 \pm 3.0_{\text{stat}})\% \]

\[\phi = \sin \psi \cos \varphi \]

\[A_\phi = (0.5 \pm 4.0_{\text{stat}})\% \]

\[\phi = \sin \psi \cos \varphi \]

\[A_\phi \neq 0 \text{ is an unambiguous signature of CP violation} \]
$K_{L,S} \rightarrow \pi^+ \pi^- e^+ e^-$

NA48 Final Results [EPJC 30 (2003) 33]

- $K_S \rightarrow \pi^+ \pi^- e^+ e^-$ (1998+1999 data) 56+621 candidates

 \[\text{BR}(K_S \rightarrow \pi^+ \pi^- e^+ e^-) = (4.69 \pm 0.30) \times 10^{-5} \]

 \[\mathcal{A}_\phi^S = (-1.1 \pm 4.1) \% \]

 Measurements will be improved with the 2002 data: > 40k events

- $K_L \rightarrow \pi^+ \pi^- e^+ e^-$ (1998+1999 data) 1162 candidates and S/B=31

 \[\text{BR}(K_L \rightarrow \pi^+ \pi^- e^+ e^-) = (3.08 \pm 0.20) \times 10^{-7} \]

 \[\mathcal{A}_\phi^L = (14.2 \pm 3.6) \% \]

 \[\frac{\Gamma(K_L \rightarrow \pi^+ \pi^- e^+ e^-)^{\text{CPV}}}{\Gamma(K_L \rightarrow \pi^+ \pi^- e^+ e^-)^{\text{CP}}} = (0.833 \pm 0.066) \]

 Measurements in agreement with theoretical models based on a phenomenological description of radiative kaon decays

M1 direct emission FF parameters:

\[\tilde{g}_{M1} = 0.99_{-0.27}^{+0.28} \text{ stat} \pm 0.07 \text{ syst} \]

\[a_1/a_2 = (-0.81_{-0.13}^{+0.07} \text{ stat} \pm 0.02 \text{ syst}) \text{ GeV}^2 \]

K^0 Charge Radius parameter:

\[g_P = 0.19 \pm 0.04 \text{ stat} \pm 0.02 \text{ syst} \]
Charged Kaon Decays
Charged Kaon Decays

Run 2003 (Jun-Sept): \(\sim 60 \) days of data-taking devoted to the study of \(K^\pm \) decays

- **Search for Direct CP violation through the asymmetry \(A_g \) in the Dalitz plot for \(K^\pm \to \pi^\pm \pi^+ \pi^- \)

\[
|M(u, v)|^2 \propto 1 + gu + hu^2 + kv^2
\]

\[
u = (s_3 - s_0) / m^2_{\pi} \quad v = (s_1 - s_2) / m^2_{\pi} \quad s_0 = (s_1 + s_2 + s_3) / 3
\]

\[
s_i = (P_K - P_i)^2 \quad (i=3 \text{ for the odd pion})
\]

\[
A_g = \frac{g^+ - g^-}{g^+ + g^-}
\]

If CP holds then \(g^+ = g^- \) and \(A_g = 0 \)

- **Current experimental value:** \(A_g = (-7 \pm 5) \times 10^{-3} \) \[Ford et al., 1970\]

Na48/2 aims at a precision of \(\sim 10^{-4} \) on \(A_g \)

- **Theoretical predictions for \(A_g \):** \(\mathcal{O}(10^{-6}) - \mathcal{O}(10^{-4}) \)

 e.g. NLO in \(\chi PT \): \(A_g = (-2.7 \pm 1.3) \times 10^{-5} \) \[E. Gámiz et al., hep-ph/0309172\]

 Some models beyond the SM can give \(A_g \sim \mathcal{O}(10^{-4}) \)

 \[G. D\'Ambrosio et al., PLB 480 (2000) 164\]

- **CP violation can also be investigated in \(K^\pm \to \pi^\pm \pi^0 \pi^0 \) or \(K^\pm \to \pi^\pm \pi^0 \gamma \) decays**
Charged Kaon Decays

✦ Measurement strategy
- use of simultaneous 60 GeV/c K^+ and K^- beams ($\Delta P_{rms} : \pm 2.4 \text{ GeV/c}$)
- 7×10^{11} p/spill on target \Rightarrow 20 – 30 Mhz rate of $\pi^\pm , K^\pm , e^\pm , p$...
- focussed beams @ DCH1-DCH2 to minimize differential acceptance effects
- alternate magnet polarity of spectrometer (1/day)
- alternate K^+/K^- beam positions in achromat (1/week)
 \Rightarrow minimize sensitivity to beam and detector instabilities with time
- measure normalized ratio
 \[R = \frac{N^+(u)}{N^-(u)} \approx 1 + A_g \cdot 2g u \]
- 80 Tbytes data volume and $\sim 1.25 \times 10^9$ reconstructed $K^\pm \rightarrow \pi^\pm \pi^+ \pi^-$ decays
 $\Rightarrow \sigma(A_g) \sim 2.3 \times 10^{-4} \,(\text{stat})$

✦ Main systematics sources
- beam geometry (K^+ and K^- beams coincide to better than 1 mm / 120 m)
- spectrometer mis-alignment (20-30 μm)
- drift chambers and trigger inefficiencies ($\sim 1 - 2\%$)
- backgrounds (small) and accidentals
- differential acceptance effects

 Systematic uncertainties must be kept $< 10^{-4}$
The K^\pm beams

SIMULTANEOUS K^+ AND K^- BEAMS

Target

0.36 mrad

K^-

K^+

TAX 17

TAX 18

Defining collimators

Protecitng collimator

KABES 1

KABES 2

KABES 3

Final collimator

Cleaning collimator

DF DF

Quadrupole Quadruplet

2nd ACHROMAT

Front-End Achromat

Edoardo Mazzucato
CEA-Saclay, DAPNIA/SPP

Recent results on Rare Kaon Decays
by the NA48 experiment at CERN (page 37)

October 6th - 11th, 2003
WIN'03 Workshop, Lake Geneva, WI, U.S.A.
Charged Kaon Decays

NA48/2 Trigger versatility and DAQ allows the study of many rare K^\pm decays

✦ K^{\pm}_{e4} ($K^{\pm}_{\mu4}$) decays
 - extract $\pi^+ \pi^-$ elastic scattering length a_0^0 with a precision of < 0.01
 \[\Rightarrow \text{determine size of quark condensate} \langle 0|q\bar{q}|0 \rangle \sim F_\pi^2 \frac{m_q^2}{m_u + m_d} \]
 - expect $\sim 700 \text{k reconstructed } K^\pm_{e4} \text{ decays in 2003}$
 - electron id using E/P + NN technique (keep bkg $< 1\%$)
 BNL E865: $a_0^0 = 0.216 \pm 0.013_{\text{stat}} \pm 0.002_{\text{syst}} \pm 0.02_{\text{theor}}$ with 400 k events

✦ $K^\pm \rightarrow \pi^\pm e^+ e^-$ and $K^\pm \rightarrow \pi^\pm \mu^+ \mu^-$

- 4-5 k $K^\pm \rightarrow \pi^\pm e^+ e^-$ events
- BR and FF measurements
- Test of NLO χPT
Charged Kaon Decays

✦ Study of several other Kaon decays (test χ_{PT} predictions)

$$K^\pm \rightarrow \pi^\pm \pi^0 \gamma, \pi^\pm \pi^0 \gamma, \pi^\pm \pi^0 l^+l^-, l^\pm \nu l^+l^-, ...$$

✦ Beam Spectrometer (KABES)
- High-rate capability and high-resolution TPC based on micromegas-type chambers (50 μm amplification gap)
- provides accurate P, t and (X,Y) coordinates of incident beam particles
- tested up to 40 MHz
- gives useful kinematical constraints for decays with only 1 charged track
 or with neutrinos in the final state: e.g. K_{e3}^\pm, $K_{\mu3}^\pm$, $K_{\mu2}^\pm$, $K^\pm \rightarrow \pi^\pm \pi^0 \pi^0$, $...$ $K^\pm \rightarrow \pi^\pm \nu \bar{\nu}$!
- allows to recover $K^\pm \rightarrow \pi^\pm \pi^+\pi^-$ events when one pion escapes detection

✦ Dedicated V_{us} run
- short run (~ 8 hours) at reduced beam intensity (1/10)
- use highly efficient minimum bias 1 track trigger
- collect all important K^\pm decay channels ($\sum BR_i \sim 1$):
 $$\mu\nu(\gamma), \pi^\pm \pi^0, \pi^\pm \pi^0 \pi^0, \pi^\pm \pi^+\pi^-, K_{e3}^\pm, K_{\mu3}^\pm, ...$$
- more than $100k$ K_{e3}^\pm and $K_{\mu3}^\pm$ events

Aim to measure $BR(K_{e3}^\pm)$ and $BR(K_{\mu3}^\pm)$ to better than 1%
Micromegas Time Projection Chambers

- HT = -6 kV
- Ne/C2H6/CF4 (79%/11%/10%)
- .835 mm pitch
- ΔV = 1 kV in 1 cm
- Mesh Strip
- Mesh = -HT mesh
- 50 μm (60 to 70 kV/cm)

Not to scale!

Recent results on Rare Kaon Decays
by the NA48 experiment at CERN (page 40)
The KAon BEam Spectrometer
Tagging incident K^\pm with $K^\pm \rightarrow \pi^+\pi^-\pi^\pm$ decays at 20 MHz

$$\sigma(X_{\text{BEAM}}) \approx \sigma(Y_{\text{BEAM}}) \sim 120 \mu m$$
KAon BEam Spectrometer

Tagging incident K^\pm with $K^\pm \rightarrow \pi^+\pi^-\pi^\pm$ decays at 20 MHz

\[
\sigma(P_{\text{BEAM}})/P_{\text{BEAM}} < 1 \%
\]

效率: $\sim 100\%$

\[
\sigma(t_{\text{BEAM}}) < 1 \text{ ns}
\]

误标记概率: few\%
The use of high intensity K_L and K_S beams by the NA48 experiment has made possible the precise investigation of several rare kaon decays for tests of CP, CPT asymmetries as well as χPT. The recent observation of 7 clean $K_S \rightarrow \pi^0 e^+e^-$ events allows to significantly improve the SM predictions for the golden $K_L \rightarrow \pi^0 e^+e^-$ mode. Additional information from the study of the $K_S \rightarrow \pi^0 \mu^+\mu^-$ channel will come very soon.

New results from the study of rare neutral kaon decays (e.g. $K_L \rightarrow e^+e^-\gamma$, K_{e3}^0, K_{e4}^0, $K_L \rightarrow \pi^0\pi^0\gamma$, etc.) and from the radiative and semileptonic Ξ^0 decays will also be available soon.

The 2003 run, dedicated to the high-precision investigation of charged kaon decays, has been successfully completed. More than $10^9 K^\pm \rightarrow \pi^\pm\pi^+\pi^-$ decays have been collected for a measurement of the CP-violation A_g asymmetry with a precision of a few 10^{-4}. Several other rare charged kaon decays are also investigated. Additional beam time to run in 2004 at CERN is being requested.