Recent results on Rare Kaon Decays by the NA48 experiment at CERN

> **Edoardo Mazzucato** CEA-Saclay, DAPNIA/SPP

WIN'03 Workshop, Lake Geneva, WI, U.S.A. October 6th - 11th, 2003

On behalf of the NA48 Collaboration: Cagliari-Cambridge-CERN-Chicago-Dubna-Edinburgh-Ferrara-Firenze-Mainz-Northwestern-Orsay-Perugia-Pisa-Saclay-Siegen-Torino-Vienna-Warsaw

Outline

NA48 Detector and Neutral Kaon Beam Lines

- $K_S \to \pi^0 e^+ e^- \\ K_S \to \pi^0 \pi^0 \pi^0 \\ K_S \to \pi^0 \gamma \gamma \\ K_S \to \gamma \gamma \\ K_{L,S} \to \pi^+ \pi^- e^+ e^- \\ \text{Charged Kaon Decays}$
- Summary and Outlook

NA48/1 $K_S
ightarrow \pi^0 e^+ e^-$ October 6th - 11th, 2003

$$K_S
ightarrow \pi^0 e^+ e^-$$

A measurement of the $K_S \to \pi^0 e^+ e^-$ decay allows to improve SM predictions of the CP violating part of the $K_L \to \pi^0 e^+ e^-$ decay rate...

The $K_L \rightarrow \pi^0 e^+ e^-$ decay amplitude has three components:

CP conserving

- dominated by the two-photon process $K_L o \pi^0 \gamma^* \gamma^*$
- can be obtained from the low $m_{\gamma\gamma}$ tail in $K_L o \pi^0 \gamma\gamma$
- NA48: BR $(K_L \to \pi^0 e^+ e^-)_{\mathsf{CPC}} = 0.47^{+0.22}_{-0.18} \times 10^{-12}$ [PLB 536 (2002) 229]

Direct CP violating

- probe of short-distance effects
- amplitude proportional to $\text{Im}(\lambda_t) = \text{Im}(V_{ts}^* V_{td})$
- expected BR($K_L
 ightarrow \pi^0 e^+ e^-)_{\mathsf{CPV}^{\mathsf{dir}}} pprox 2-3 imes 10^{-12}$

Indirect CP violating

-
$$\mathsf{BR}(K_L o \pi^0 e^+ e^-)_{\mathsf{CPV}^{\mathsf{ind}}} = rac{ au_L}{ au_S} |arepsilon|^2 \mathsf{BR}(K_S o \pi^0 e^+ e^-)$$

$$K_S
ightarrow \pi^0 e^+ e^-$$

Interference between direct and indirect CP violation amplitudes in the $K_L \rightarrow \pi^0 e^+ e^-$ decay can give rise to sizeable effects...

Theoretical predictions:

 $\begin{array}{l} \mathsf{BR}(K_L \to \pi^0 e^+ e^-)_{\mathsf{CPV}} \times 10^{12} = 15.3 \, a_S^2 - 6.8 \left(\frac{\mathsf{Im}(\lambda_t)}{10^{-4}}\right) a_S + 2.8 \left(\frac{\mathsf{Im}(\lambda_t)}{10^{-4}}\right)^2 \\ \mathsf{BR}(K_S \to \pi^0 e^+ e^-) \times 10^9 = 5.2 \, a_S^2 \qquad \text{with } a_S \sim \mathcal{O}(1) \end{array}$

[AEIP: G. D'Ambrosio, G. Ecker, G. Isidori and J. Portoles, JHEP 8 (1998) 4]*

Experimental published limits (@ 90% **CL)**:

 $\begin{array}{ll} \mathsf{BR}(K_L \to \pi^0 e^+ e^-) < 5.1 \times 10^{-10} & \mathsf{KTeV} \; [\mathsf{PRL} \; 86 \; (2001) \; 397] \\ \mathsf{BR}(K_S \to \pi^0 e^+ e^-) < 1.4 \times 10^{-7} & \mathsf{NA48} \; [\mathsf{PLB} \; 514 \; (2001) \; 253] \end{array}$

NA48/1 measures both $K_S \rightarrow \pi^0 e^+ e^-$ and $K_S \rightarrow \pi^0 \mu^+ \mu^-$ modes (2002 data)...

Theory: $\frac{\text{BR}(K_S \to \pi^0 \mu^+ \mu^-)}{\text{BR}(K_S \to \pi^0 e^+ e^-)} \simeq 0.23$ in the VDM framework [AEIP]

* See also G. Buchalla, G. D'Ambrosio and G. Isidori, hep-ph/0308008 [BDI]

$$K_S o \pi^0 e^+ e^-$$

2002 High Intensity K_S run...

- $5 imes 10^{10} \, {
 m p/spill}$ (@ 400 GeV/c)
- spill: 4.8 s every 16.2 s
- 4.2 mrad production angle
- $4 imes 10^{10}K_S$ decays in 89 days
- modified K_S target+collimator region
- LKr and DCH read-out upgraded
- 50 K events/spill
- 40 Tbytes data volume

Trigger efficiency > 99% measured with $K_S \rightarrow \pi^0 \pi_D^0$ reconstructed decays.

$$K_S
ightarrow \pi^0 e^+ e^-$$

Event selection

- Select candidates with $40 < E_K < 240\,{
 m GeV}$ and $au < 2.5\, au_S$ of final collimator
- 4 in-time clusters in LKr with 2 tracks forming one good e^+e^- vertex
- Particle id.: |E/P-1| < 0.05 and no signal in $\mu {\rm VETO}$ or HAC
- Energy COG at LKr < 6 cm from beam axis
- No extra in-time track or cluster
- $m_{ee\gamma\gamma}$: $m_K \pm 2.5 \, \sigma_{m_K}$ assuming $\gamma\gamma$ pair originates from charged vertex
- $m_{\gamma\gamma}:m_{\pi^0}\pm 2.5\,\sigma_{m_{\pi^0}}$ assuming $\gamma\gamma$ pair originates from vertex imposing m_K

$$(\sigma_{m_K} = 4.6 \, {
m MeV/c^2} \, \, {
m and} \, \, \, \sigma_{m_{\pi^0}} = 1.0 \, {
m MeV/c^2})$$

Background sources:

- $K_S \to \pi^0 \pi_D^0$, $\pi^0 \pi_D^0$ + conversion(s), $\pi^0 \pi_{DD}^0$, $\pi^0 \pi^0(ee)$, $\pi_D^0 \pi_D^0$
- $K_L \rightarrow ee\gamma\gamma$, $ee\gamma$ + bremsstrahlung, $\pi^0\pi^+\pi^-$, $\pi^0\pi^\pm e^\mp\nu$
- $\Xi^0
 ightarrow \Lambda(p\pi^-)\pi^0 \,, \; \Lambda(pe^u)\pi^0 \,, \; \Sigma^+(p\pi^0)e^u$
- Accidental activity: $\phi(K_SK_L)$, $K_L + K_S$ from different proton interactions

Perform blind analysis ... Keep expected background level in signal region small!Signal region: $2.5 \sigma_{m_K} \times 2.5 \sigma_{m_{\pi^0}}$ Control region: $6.0 \sigma_{m_K} \times 6.0 \sigma_{m_{\pi^0}}$

$$K_S
ightarrow \pi^0 e^+ e^-$$

Reject huge $K_S \to \pi^0 \pi_D^0(e^+e^-\gamma)$ background $(3 \times 10^8 \text{ in } 0 < \tau < 2.5\tau_S)$:

- $d_{ee}^{DCH1} > 2 \, {\rm cm}$ to reject events with small θ_{ee}

- $m_{ee} > .165 \, {
m GeV/c^2}$ ($30 \, \sigma_{m_{\pi^0}}$ above m_{π^0})

$$K_S
ightarrow \pi^0 e^+ e^-$$

Background from $K_S \to \pi^0 \pi^0_D$, $\pi^0 \pi^0_{DD}$, $\pi^0 \pi^0(ee)$, γ conversions ...

$$K_S
ightarrow \pi^0 e^+ e^-$$

Like-sign e^+e^+ or e^-e^- pairs ...

No event observed in signal and control regions ...

 $K_S
ightarrow \pi^0 e^+ e^-$

Background from $K_S \rightarrow \pi_D^0 \pi_D^0 \dots$

Require $(m_{e\gamma}, m_{e\gamma}) > .165 \text{ GeV/c}^2$ to reject low-energy e^+, e^- escaping detection $\implies (m_{e\gamma}, m_{e\gamma}) \sim (m_{\pi^0}, m_{\pi^0})$ when $m_{ee\gamma\gamma} \sim m_K$

No event found in signal region from MC sample $\sim 30 \times 2002$ statistics (1 event in control region) ...

$$K_S
ightarrow \pi^0 e^+ e^-$$

Background from
$$K_{L,S} \rightarrow e^+ e^- \gamma \gamma$$
 ...

Estimated from $K_L \rightarrow e^+ e^- \gamma \gamma$ decays with 2001 data (~ 10 × 2002 expected $e^+ e^- \gamma \gamma$ statistics)

Background in the signal region: $0.08^{+0.03}_{-0.02}$ event ...

$${}^-K_S
ightarrow \pi^0 e^+ e^-$$

Accidental activity ...

Estimated from events in $(\Delta t = |t_{ee} - t_{\gamma\gamma}|)$ time sidebands

Background in the signal region: $0.07^{+0.07}_{-0.03}$ event ...

$$K_S
ightarrow \pi^0 e^+ e^-$$

Summary of the most significant background contributions ...

Background source	Control region	Signal region
$K_S o \pi^0_D \pi^0_D$	0.03	< 0.01
$K_L ightarrow ee \gamma \gamma$	0.11	$0.08\substack{+0.03\\-0.02}$
Accidentals	0.19	$0.07\substack{+0.07 \\ -0.03}$
Total	0.33	$0.15\substack{+0.10 \\ -0.04}$

All other investigated sources of background were found to be negligible (e.g. $K_S \to \pi^0 \pi_D^0$, Ξ^0 decays, $K_L \to \pi^+ \pi^- \pi^0$, ϕ decays, etc.).

Control and signal regions remained masked until the study of the background was completed ...

$$-K_S
ightarrow \pi^0 e^+ e^-$$

Unmasking control and signal regions ...

$$- K_S
ightarrow \pi^0 e^+ e^-$$

Data -vs- Monte Carlo ...

$$K_S
ightarrow \pi^0 e^+ e^-$$

Decay amplitude from χPT model of AEIP (vector interaction + FF)

$$K_S
ightarrow \pi^0 e^+ e^-$$

Sensitivity of ${\it BR}(K_L o \pi^0 e^+ e^-)$ to ${\it Im}(\lambda_t)$...

 $\begin{array}{l} \mathsf{BR}(K_L \to \pi^0 e^+ e^-)_{\mathsf{CPV}} \simeq (17.2_{\mathsf{indirect}} \pm 9.4_{\mathsf{interference}} + 4.7_{\mathsf{direct}}) \times 10^{-12} \\ \mathsf{Im}(\lambda_{\mathsf{t}}) = (1.30 \pm 0.12) \times 10^{-4} \quad [\mathsf{S.H. Kettell, L.G. Landsberg and H. Nguyen, hep-ph/0212321}] \\ \mathsf{If} \ a_S \ \mathsf{is} \ \mathsf{negative \ then} \ \mathsf{BR}(K_L \to \pi^0 e^+ e^-) \ \mathsf{retains \ some \ sensitivity \ to} \ \mathsf{Im}(\lambda_{\mathsf{t}}) \ \mathsf{through \ the} \\ \mathsf{interference \ term \ ...} \end{array}$

A measurement of $BR(K_S \rightarrow \pi^0 \mu^+ \mu^-)$ by NA48/1 will come soon!

$$K_S o \pi^0 \pi^0 \pi^0$$

$$\eta_{000}=rac{A(K_S o\pi^0\pi^0\pi^0)}{A(K_L o\pi^0\pi^0\pi^0)}$$
 If CPT conserved: $\eta_{000}{=}arepsilon+irac{{
m Im}(A_1)}{{
m Re}(A_1)}$

• 2000 NEAR target data

- $5.9 imes 10^6 \; 3\pi^0$ events
- 2000 FAR target data
 - $1.3 imes 10^8~K_L
 ightarrow 3\pi^0$ decays
 - 1^{st} order accept. corr.
- Monte Carlo

Y

- 2^{nd} order accept. corr.
- Analysis in energy bins

cays
$$\int_{0}^{50000} \int_{0}^{40000} \int_{0}^{40000} + K^{0} \rightarrow 3\pi^{0}$$
 (NEAR target)
 $\int_{0}^{20000} \int_{0}^{1} K^{0} \rightarrow 3\pi^{0}$ (FAR target)
 $\int_{0}^{1} \frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10}$
Lifetime / τ_{s}

$$f(E,t) = \frac{I_{3\pi^0}^{\text{NEAR}}}{I_{3\pi^0}^{\text{FAR}}} = A(E) [1 + |\eta_{000}|^2 e^{(\Gamma_L - \Gamma_S) t} + 2D(E) \left(\frac{\text{Re}(\eta_{000}) cos\Delta m t}{1 - \text{Im}(\eta_{000}) sin\Delta m t} \right) e^{\frac{1}{2} (\Gamma_L - \Gamma_S) t}]$$

Fit parameters A(E), $Re(\eta_{000})$, $Im(\eta_{000})$

D(E): K^0 - $\overline{K^0}$ dilution (from NA31)

Extract $Re(\eta_{000})$ and $Im(\eta_{000})$ from a fit in energy bins:

 $(70 < E < 170 \, {
m GeV})$

 $\begin{array}{l} \mathsf{Re}(\eta_{000}) = -0.026 \pm 0.010_{stat} \\ \mathsf{Im}(\eta_{000}) = -0.034 \pm 0.010_{stat} \\ \rho = 0.78 \quad \chi^2/ndf = 415/405 \end{array}$

Systematics:

Source	$Re(\eta_{000})$	$Im(\eta_{000})$
Acceptance	\pm 0.003	\pm 0.003
Accid. activity	\pm 0.001	\pm 0.006
Energy scale	\pm 0.001	\pm 0.001
$K^0\overline{K^0}$ dilution	\pm 0.003	\pm 0.004
Fit	\pm 0.001	\pm 0.002
Total	\pm 0.005	\pm 0.011

♦ NA48 Preliminary Result:
Re(η_{000}) = -0.026±0.010_{stat}±0.005_{syst}
Im(η_{000}) = -0.034±0.010_{stat}±0.011_{syst}

NA48 Preliminary Results

SND (1999):

 $\mathsf{BR}(K_S o \pi^0 \pi^0 \pi^0) < 1.4 imes 10^{-5} \ 90\% \,\mathsf{CL}$

♦ If $\operatorname{Re}(\eta_{000}) = \operatorname{Re}(\varepsilon)$ (CPT):

 ${\sf BR}(K_S o \pi^0 \pi^0 \pi^0) < 3.0 imes 10^{-7} \; 90\% \, {\sf CL}$

CPT test (BS unitarity relation):

 $(1+i \tan \phi_{SW})[\operatorname{Re}(\varepsilon) - i \operatorname{Im}(\delta)] = \sum_{f} \alpha_{f}$

$lpha_f$	$10^3 imes$ Re($lpha_f$)	$10^3 imes$ Im($lpha_f$)
$lpha_{+-}$	$1.136{\pm}0.013$	$1.071{\pm}0.013$
$lpha_{00}$	$0.517{\pm}0.010$	$0.486{\pm}0.010$
$lpha_{+-\gamma}$	$0.003{\pm}0.001$	$0.003{\pm}0.000$
α_{l3}	$0.004{\pm}0.003$	0.003±0.004
α_{+-0}	0.000±0.002	$0.000 {\pm} 0.004$
$lpha_{000}$	0.029±0.040	-0.026±0.058

NA48:

 $\begin{array}{l} \mathsf{Re}(\alpha_{000}) {=} (-0.009 \pm 0.004) \times 10^{-3} \\ \mathsf{Im}(\alpha_{000}) {=} (-0.012 \pm 0.005) \times 10^{-3} \end{array}$

 \Rightarrow Im(δ)=(-1.2 \pm 3.0) \times 10⁻⁵

If CPT is conserved in the decay:

 $m_{K^0} - m_{\overline{K^0}} = (-1.7 \pm 4.2) \times 10^{-19} \, {
m GeV/c^2}$

$${igstar} K_S o \pi^0 \gamma \gamma$$

• χPT predictions:

[G. Ecker, A. Pich, E. de Rafael, PLB 189 (1987) 363]

- total rate dominated by the π^0 pole

 \implies Chiral structure of the weak vertex can be tested from the shape of the $z = (m_{34}/m_K)^2$ distribution

♦ NA48/1:

- 2000 NEAR target data
- $K_S
 ightarrow \pi^0 \pi^0$ decays as normalization

 \implies First observation of the $K_S \rightarrow \pi^0 \gamma \gamma$ decay

♦ χ*PT*:

- Unambiguous and clean $\mathcal{O}(p^4)$ prediction
- $\mathsf{BR}(\underline{K_S} \rightarrow \gamma \gamma) = 2.1 \times 10^{-6}$

[G. D'Ambrosio and D. Espriu, PLB 175 (1986) 237] [J.L. Goity, ZPC 34 (1987) 341]

♦ NA48/1:

- 2000 NEAR target data (normalize to $K_S
 ightarrow \pi^0 \pi^0$ decays)
- Choose decays close to collimator exit to reject background from $K_S \to \pi^0 \pi^0$ with only 2 showers in LKr calorimeter

 \implies Reconstructed vertex moves downstream due to missing energy

- 2000 FAR target data to measure $\frac{BR(K_L \rightarrow \gamma \gamma)}{BR(K_L \rightarrow 3\pi^0)}$ and to estimate the irreducible $K_L \rightarrow \gamma \gamma$ background:

$$rac{{\sf BR}(K_L o \gamma \gamma)}{{\sf BR}(K_L o 3\pi^0)} = (2.81 \pm 0.01_{stat} \pm 0.02_{syst}) imes 10^{-3}$$

 π^+

 K_S

$$igstar{K_S
ightarrow \gamma \gamma}$$
 ——

 $\mathsf{BR}(K_S
ightarrow \gamma \gamma) = (2.78 \pm 0.06_{stat} \pm 0.03_{syst} \pm 0.02_{norm}) imes 10^{-6}$

 $7461 \pm 172 \; K_S
ightarrow \gamma \gamma$ decays

$$K_{L,S}
ightarrow \pi^+\pi^- e^+e^-$$

$K_L ightarrow \pi^+\pi^- e^+ e^-$

The interference between the dominant M1 (CP=-1) and IB (CP=+1) components gives rise to a large CP-violating asymmetry ($A_{\phi} \sim 14\%$) in the ϕ distribution between the $\pi^{+}\pi^{-}$ and $e^{+}e^{-}$ planes in the kaon c.m. [P. Heiliger and L.M. Sehgal, PRD 48 (1993) 4146]

${igstarrow}~K_S ightarrow \pi^+\pi^- e^+e^-$

Mainly due to IB ... no such asymmetry expected ...

1998+1999 NA48 data

Run 2003 (Jun-Sept): \sim 60 days of data-taking devoted to the study of K^{\pm} decays

♦ Search for Direct CP violation through the asymmetry A_g in the Dalitz plot for $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

$$|M(u,v)|^2 \propto 1+gu+hu^2+kv^2$$

$$u = (s_3 - s_0) / m_\pi^2$$
 $v = (s_1 - s_2) / m_\pi^2$ $s_0 = (s_1 + s_2 + s_3) / 3$
 $s_i = (P_K - P_i)^2$ (i=3 for the odd pion)

$$\mathcal{A}_g = rac{g^+ - g^-}{g^+ + g^-}$$

If CP holds then
$$g^+ = g^-$$
 and $\mathcal{A}_g = 0$

• Current experimental value: $A_g = (-7\pm5) \times 10^{-3}$ [Ford et al.,1970] NA48/2 aims at a precision of $\sim 10^{-4}$ on A_g

◆ Theoretical predictions for A_g: O(10⁻⁶) - O(10⁻⁴)
 e.g. NLO in χPT: A_g=(-2.7±1.3)×10⁻⁵ [E. Gámiz et al., hep-ph/0309172]
 Some models beyond the SM can give A_g ~ O(10⁻⁴)
 [G. D'Ambrosio et al., PLB 480 (2000) 164]

• CP violation can also be investigated in $K^{\pm} \to \pi^{\pm}\pi^{0}\pi^{0}$ or $K^{\pm} \to \pi^{\pm}\pi^{0}\gamma$ decays

Measurement strategy

- use of simultaneous 60 GeV/c K^+ and K^- beams $(\Delta P_{rms}:\pm 2.4 \,\text{GeV/c})$
- 7-10×10¹¹ p/spill on target $\Rightarrow 20 30$ Mhz rate of $\pi^{\pm}, K^{\pm}, e^{\pm}, p$...
- focussed beams @ DCH1-DCH2 to minimize differential acceptance effects
- alternate magnet polarity of spectrometer (1/day)
- alternate K^+/K^- beam positions in achromat (1/week)

 \Rightarrow minimize sensitivity to beam and detector instabilities with time

- measure normalized ratio

$$\mathsf{R} = rac{N^+(u)}{N^-(u)} pprox 1 + \mathcal{A}_g \cdot 2g \, u$$

- 80 Tbytes data volume and ${\sim}1.25{\times}10^9$ reconstructed $K^\pm o \pi^\pm \pi^+\pi^-$ decays

 $\Rightarrow \sigma(\mathcal{A}_g) \sim 2.3 \times 10^{-4} \, (stat)$

Main systematics sources

- beam geometry (K^+ and K^- beams coincide to better than 1 mm / 120 m)
- spectrometer mis-alignment (20-30 μ m)
- drift chambers and trigger inefficiencies ($\sim 1-2\%$)
- backgrounds (small) and accidentals
- differential acceptance effects

Systematic uncertainties must be kept $< 10^{-4}$

NA48/2 Trigger versatility and DAQ allows the study of many rare K^{\pm} decays

- $\bullet~K_{e4}^{\pm}~(K_{\mu4}^{\pm})$ decays
 - extract $\pi^+\pi^-$ elastic scattering length a^0_0 with a precision of < 0.01

 \Rightarrow determine size of quark condensate $\langle 0|q\overline{q}|0\rangle \simeq F_{\pi}^2 rac{m_{\pi}^2}{m_{\pi}+m_d}$

- expect \sim 700 k reconstructed K^{\pm}_{e4} decays in 2003
- electron id using E/P + NN technique (keep bkg < 1%) BNL E865: $a_0^0 = 0.216 \pm 0.013_{stat} \pm 0.002_{syst} \pm 0.02_{theor}$ with 400 k events

- 4-5 k $K^{\pm}
 ightarrow \pi^{\pm} e^+ e^-$ events
- BR and FF measurements
- Test of NLO χPT

♦ Study of several other Kaon decays (test χPT predictions) $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma, \pi^{\pm}\pi^{0}\gamma\gamma, \pi^{\pm}\pi^{0}l^{+}l^{-}, l^{\pm}\nu l^{+}l^{-}, ...$

Beam Spectrometer (KABES)

- High-rate capability and high-resolution TPC based on micromegas-type chambers ($50 \mu m$ amplification gap)
- provides accurate P, t and (X,Y) coordinates of incident beam particles
- tested up to 40 MHz
- gives useful kinematical constraints for decays with only 1 charged track or with neutrinos in the final state: e.g. K_{e3}^{\pm} , $K_{\mu3}^{\pm}$, $K_{\mu2}^{\pm}$, $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$, ... $K^{\pm} \rightarrow \pi^{\pm}\nu\overline{\nu}$!
- allows to recover $K^\pm o \pi^\pm \pi^+ \pi^-$ events when one pion escapes detection

♦ Dedicated V_{us} run

- short run (\sim 8 hours) at reduced beam intensity (1/10)
- use highly efficient minimum bias 1 track trigger
- collect all important K^{\pm} decay channels ($\sum \mathsf{BR}_i \sim 1$):

$$\mu
u(\gamma)$$
, $\pi^\pm\pi^0$, $\pi^\pm\pi^0\pi^0$, $\pi^\pm\pi^+\pi^-$, K^\pm_{e3} , $K^\pm_{\mu3}$, ...

- more than 100 k K_{e3}^{\pm} and $K_{\mu3}^{\pm}$ events

Aim to measure ${\it BR}(K_{e3}^{\pm})$ and ${\it BR}(K_{\mu3}^{\pm})$ to better than $1\,\%$

The KAon BEam Spectrometer

Recent results on Rare Kaon Decays by the NA48 experiment at CERN (page 41)

Summary and Outlook

- ◆ The use of high intensity K_L and K_S beams by the NA48 experiment has made possible the precise investigation of several rare kaon decays for tests of CP, CPT asymmetries as well as χPT . The recent observation of 7 clean $K_S \rightarrow \pi^0 e^+ e^-$ events allows to significantly improve the SM predictions for the golden $K_L \rightarrow \pi^0 e^+ e^-$ mode. Additional information from the study of the $K_S \rightarrow \pi^0 \mu^+ \mu^-$ channel will come very soon.
- ♦ New results from the study of rare neutral kaon decays (e.g. $K_L \rightarrow e^+e^-\gamma$, K_{e3}^0 , K_{e4}^0 , $K_L \rightarrow \pi^0\pi^0\gamma$, etc.) and from the radiative and semileptonic Ξ^0 decays will also be available soon.
- ◆ The 2003 run, dedicated to the high-precision investigation of charged kaon decays, has been successfully completed. More than 10⁹ K[±] → π[±]π⁺π⁻ decays have been collected for a measurement of the CP-violation A_g asymmetry with a precision of a *few* 10⁻⁴. Several other rare charged kaon decays are also investigated. Additional beam time to run in 2004 at CERN is being requested.