Recent results from **KLOE**

Fabio Bossi, LNF-INFN

The **DA***Φ***NE** complex

DA DA DA DA DA DA DA DA DA DA	Design	2002	Goals 2003-04
Max. bunches	120	51	110
Lifetime (mins)	120	40	70
Bunch current (mA)	40	20	20
<i>L</i> , single bunch (cm ⁻² s ⁻¹)	4.4·10 ³⁰	1.5·10 ³⁰	2·10 ³⁰
<i>L</i> , peak (cm ⁻² s ⁻¹)	5.3·10 ³²	0.75·10 ³²	2·10 ³²

- $W = M\phi = 1019 \text{ MeV}$
- Separate *e*⁺, *e*⁻ rings minimize beam-beam interactions
- Beams cross at 12.5 mrad angle
- Injection during data-taking

The **KLOE** detector

- **Superconducting coil** B = 0.52 T
- **Be beam pipe** (0.5 mm thick)
- **Constraint Science Constraints Constrain**

7 m

Drift chamber

 $(4 \text{ m} \varnothing \times 3.3 \text{ m}) 90\% \text{ He} + 10\%$ IsoB, CF frame, 12582 stereo, single sense wire, "almost squared" cells

Quadrupole calorimeter

Detector performance

 σ_E / E 5.7% / $\sqrt{E(\text{GeV})}$ σ_t 54 ps / $\sqrt{E(\text{GeV})} \oplus$ 50 ps $\sigma^{\text{vertex}} \sim 1.5 \text{ cm}$

 σ_p/p 0.4 % (tracks with $\vartheta > 45^\circ$) σ_{xy}^{hit} 150 µm, σ_z^{hit} 2 mm $\sigma^{vertex} \sim 3$ mm $\sigma_M(K_s) \sim 1$ MeV

Kaons @ KLOE

The Φ decay at rest provides *monochromatic* and *pure* beams of Kaons

- K rare decays
- Absolute branching ratios
- K lifetimes

 $K^+K^ 1.5 \times 10^6 / \text{pb}^{-1}$ $p^* = 127 \text{ MeV/c}$ K_LK_S $10^6 / \text{pb}^{-1}$ $p^* = 110 \text{ MeV/c}$

The variety of *K* decay channels and the possibility for a complete closure of the kinematics allow the selection of many samples for *measuring the efficiencies directly from data.*

KLOE Data taking: 2000-2002

Particles' collection:
$$\begin{cases} 7.10^8 \ K^+ \ K^- \text{ pairs} \\ 5.10^8 \ K_S \ K_L \text{ pairs} \\ 2.10^7 \ \eta \end{cases}$$

Kaon physics @ KLOE

$egin{aligned} & K_{\mathcal{S}} & o \pi^+\pi^-(\gamma) \ & K_{\mathcal{S}} & o \pi^0\pi^0 \end{aligned}$	Phys. Lett. B538 21 (2002)
$K_{\rm S} \rightarrow \pi e v$	<i>Phys. Lett.</i> B537 21 (2002) Preliminary update with 2001 data
K _S mass	KLOE Note 181 (http://www.lnf.infn.it/kloe)
$K_L ightarrow \gamma \gamma / K_L ightarrow 3 \pi^0$	Phys. Lett. B566 61 (2003)
$K_L \rightarrow \text{charged}$	Preliminary results
CP violation & interference	Preliminary results
$K^{\pm} ightarrow \pi^{\pm} \pi^{0} \pi^{0}$	hep-ex/0307054, submitted to EPS'03, LP'03
$K^{\pm} ightarrow \pi^0 \pi^0 e^{\pm} v$	Preliminary results
V _{us}	Preliminary results

Tagged K_L and K_s "beams"

 K_L tagged by $K_S \rightarrow \pi^+\pi^-$ at IPEfficiency ~ 70% (mainlygeometrical) K_L angular resolution: ~ 1° K_L momentum resolution: ~ 2 MeV

 K_S tagged by K_L interac. in EmCEfficiency ~ 30% (largelygeometrical) K_S angular resol.: ~ 1° (0.3° in Φ) K_S momentum resolution: ~ 2 MeV

K_S tagging

- Clean $\mathbf{K}_{\mathbf{S}}$ tagging by time-of-flight identification of $\mathbf{K}_{\mathbf{L}}$ interactions in the calorimeter
- K_L velocity in the ϕ rest frame $\beta^* \sim 0.218$
- Tagging efficiency $\varepsilon_{tag,total} \sim 30\%$

KLOE has now about 1.5 10⁸ tagged K_s.
Almost all channels are accessible.
Results from 2000 data (5.4 10⁶ tagged K_s) on:

(1) R=
$$\Gamma(K_S \rightarrow \pi^+\pi^-) / \Gamma(K_S \rightarrow \pi^0\pi^0)$$

(2) BR($K_S \rightarrow \pi^\pm e^\pm v$)

Phys. Lett. **B 538** (2002), 21 Phys. Lett. **B 535** (2002), 37

Use time information from calorimeter clusters to perform PID for charged tracks

π/e identification

• Time of flight e/π identification ($\delta t < 2 \text{ ns}$):

 $\delta t(m) = t_{cluster} - t.o.f.$ calculated with mass hypothesis m

• Sign of charge is determined \rightarrow semileptonic asymmetry accessible

 $BR(K_S \rightarrow \pi ev)$

KLOE '03 preliminary result **170 pb⁻¹** 2001 data

$BR(K_S \rightarrow \pi ev)$: charge asymmetry

KTeV 2002 for $A_L = (3.322 \pm 0.058_{stat} \pm 0.047_{syst}) \times 10^{-3}$

BR($K_{\rm S} \rightarrow \pi e v$): $\Delta S = \Delta Q$ rule

 $\Gamma(K_{\rm I} \to \gamma \gamma) / \Gamma(K_{\rm I} \to \pi^0 \pi^0 \pi^0)$

- Dominated by long-distance contribution $K_L \rightarrow \gamma \gamma$
- Dominates long-distance contribution to $K_L \rightarrow \mu^+ \mu^-$

Exploits performance of EmC for reconstruction of photon vertex

$K_L \rightarrow$ charged particles

Kaon interferometry

Double differential *decay time* distribution

$$I(f_{1},t_{1};f_{2},t_{2}) = C_{12} \Big\{ |\eta_{1}|^{2} e^{-\Gamma_{L}t_{1}-\Gamma_{S}t_{2}} + |\eta_{2}|^{2} e^{-\Gamma_{S}t_{1}-\Gamma_{L}t_{2}} - 2|\eta_{1}||\eta_{2}|e^{-(\Gamma_{S}+\Gamma_{L})(t_{1}+t_{2})/2} \cos[\Delta m(t_{1}-t_{2})+\phi_{2}-\phi_{1}] \Big\}$$

$$f_{i} = \pi^{+}\pi^{-}, \pi^{0}\pi^{0}, \pi^{1}\nu, \pi^{+}\pi^{-}\pi^{0}, 3\pi^{0}, \pi^{+}\pi^{-}\gamma ..\text{etc}$$
Integral decay time distribution
$$I(f_{1}, f_{2}; \Delta t \ge 0) = \frac{C_{12}}{\Gamma_{S}+\Gamma_{L}} \Big[|\eta_{1}|^{2} e^{-\Gamma_{L}\Delta t} + |\eta_{2}|^{2} e^{-\Gamma_{S}\Delta t} - 2|\eta_{1}||\eta_{2}|e^{-(\Gamma_{S}+\Gamma_{L})\Delta t/2} \cos(\Delta m\Delta t + \phi_{2} - \phi_{1}) \Big]$$
for $\Delta t < 0$ $\Delta t \rightarrow |\Delta t|$ and $1 \leftrightarrow 2$

From the fit to these, for the arious decay channels one gets

$$\Gamma_{S}, \Gamma_{L}, \Delta m, |\eta_{i}|, \arg(\eta_{i}) = \phi_{i}$$

A first glance at interference

$$K_{S}K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-} |A(\Delta t)|^{2} \propto e^{-\Gamma_{L}|\Delta t|} + e^{-\Gamma_{S}|\Delta t|} - 2e^{-(\Gamma_{S}+\Gamma_{L})|\Delta t|/2} \cos(\Delta n\Delta t)$$

KLOE preliminary 340 pb⁻¹ '01 + '02 data

Fit with PDG values for Γ_S , Γ_L $\chi^2/d.o.f. = 43.7/47$

 $\Delta m = (5.64 \pm 0.37) \times 10^{-11} \ \hbar \ \text{s}^{-1}$ PDG '02: (5.301 ± 0.016)×10⁻¹¹ \ \hbar \ \text{s}^{-1}

First observation of quantum interference in relative decay-time distribution of K_s, K_L

 $\phi \rightarrow K_{\rm S} K_{\rm L} \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: measurement of decoherence

$$I(\pi^{+}\pi^{-},\pi^{+}\pi^{-};|\Delta t|) \propto e^{-\Gamma_{L}|\Delta t|} + e^{-\Gamma_{S}|\Delta t|} - 2\cdot(1-\zeta) e^{-(\Gamma_{S}+\Gamma_{L})|\Delta t|/2} \cos(\Delta t) \Delta t|)$$

interference term modified introducing a *decoherence* parameter ζ : $\zeta=0 \rightarrow$ "orthodox" QM $\zeta=1 \rightarrow$ Furry's hypothesis (spontaneous factorization) [W.Furry, P.R.49 (1936) 393]

decoherence ζ depends on which basis the initial state is written (QM <u>does not!</u>)

R.A. Bertlmann et al., Phys. Rev. D60 (1999) 114032 using CPLEAR data obtain:

$$\zeta_{K_S,K_L} = 0.13 \pm 0.16$$
$$\zeta_{K^0,\overline{K}^0} = 0.4 \pm 0.7$$

KLOE VERY PRELIMINARY (340 pb⁻¹):

$$\zeta_{K_S K_L} = 0.12 \pm 0.08$$
$$\zeta_{K^0 \overline{K}^0} = (0.8 \pm 0.5) \times 10^{-5}$$

An interlude: $K_{\rm s}$ mass determination

Momentum scale calibrated to CMD-2 '01

Φ peak scan (2001): 29 pts, 0.5 pb⁻¹

Charged kaons @ KLOE

- $\blacktriangleright \text{BR } (\phi \rightarrow K^+ K^-) = 49.4 \%$
- \succ Decay length $K^+K^- = 95$ cm
- $> P_{\rm K} \approx 100 \text{ MeV/c} \quad (\beta_{\rm K} \approx 0.2)$
- ➢ dE/dx at beam pipe and DC wall up to 30 MeV/c (20 %)
- ➤ 40% of the K[±] decays outside the tracking volume

Tagging

- 1 hemisphere tagging strategy: μ[±]ν_m, π[±]π⁰
 p^{*} peaks are used to tag K[±]
- a) Reject non-K background
- b) Fix absolute Timing
- c) Satisfy Trigger requirements

Tracking systematics

Tracking systematics are addressed *directly on data* by extrapolating the tagging signal to the recoiling hemisphere

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \pi^0$ decay

♦ Extract isospin amplitudes and phase shifts for K → 3π decays (input to χ PT)

✤ Interesting for direct CPV by measuring charge asymmetry in K^{\pm} rates (~10⁻⁸) or in the Dalitz plot slopes (10⁻⁶ up to 10⁻³, model dependent)

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ decay: Dalitz plot parameters

 $Y \propto T^*(\pi^{\pm}), X \propto T^*(\pi^0\pi^0)$

Fit to Dalitz plot: $F(X, Y) = 1 + gY + hY^2 + kX^2$

	KLOE (187 pb ⁻¹)	PDG '02	ISTRA('03)
g	0.585±0.010 ±0.012	0.652±0.031	0.627 <u>+</u> 0.004
			<u>+</u> 0.010
h	0.030±0.010 ±0.013	0.057±0.018	0.046 <u>+</u> 0.004
			<u>+</u> 0.012
k	0.0064±0.0026	0.0197±0.0054	0.001 <u>+</u> 0.001
±0.0018		<u>+</u> 0.002	

 $K^{\pm} \rightarrow \pi^0 \pi^0 \mathrm{e}^{\pm} \nu (\mathrm{K}_{s4}')$

* χ_{PT} allows to extract $|F_{00}|$ form factor from the decay width * Test of ΔI = 1/2 rule and Bose statistics

signal extracted from kinematic fit to previous data

KLOE preliminary (441 pb⁻¹ '01 + '02 data) BR(K_{e4} ') = (2.43 ± 0.20 ± 0.22) × 10⁻⁵

PDG fit: $(2.1 \pm 0.4) \times 10^{-5}$ Best measurement:

 $(2.54 \pm 0.89) \times 10^{-5}$

$$\Gamma(K_{e4}') \cong 0.80 \cdot |V_{us}F_{00}|^2 \times 10^3 \,\mathrm{sec}^{-1}$$

V_{us} from K_{l3} decays

$$\Gamma(K_{e3}) = \frac{G_F^2 m_K^5}{192\pi^3} C_K^2 |V_{us}|^2 |f_+^{K\pi}(0)|^2 I_K(m_K^2, m_\pi^2, m_\ell^2, \tilde{f}_+^{K\pi}(q^2))$$
measuring provided by the theory CVC+SU(3) \rightarrow f ^{K\pi}(0) = 1 of the form factor:
$$\int K_x^K (q^2) = f_x^{K\pi}(0) \cdot \left(1 + \frac{\lambda_+^{K\pi}}{m_\pi^2} q^2\right)$$
The observable is: $V_{us} || f_+(0)|$

can be reduced...

Dedicated Particle- id still under study

dE/dx in the DC

Improved Monte Carlo Simulation

Ambitious program for MC development and production

Simulated event samples statistically comparable to data

 $\phi \rightarrow \text{all } 452 \text{ pb}^{-1} \text{ at } 1:5 \text{ scale} \sim 300 \text{ M events}$ $\phi \rightarrow K_S K_L 452 \text{ pb}^{-1} \text{ at } 1:1 \text{ scale} \sim 500 \text{ M events}$

Comprehensive upgrades Both MC executable and production procedure affected:

- State-of-the-art detector simulation
- Inclusion of accidental activity from machine background
- MC DST's to provide transparent user interface

Each run in data set individually simulated

• \sqrt{s} , \mathbf{p}_{ϕ} , \mathbf{x}_{ϕ} , background, dead wires, trigger thresholds...

Radiative corrections

New MC generators for $\pi\pi$ and Ke3 decays including radiated photon, without any cutoff on the energy. The fraction of events in the tail is in agreement with present experimental knowledge.

$$N(E_{\gamma} > 50 \text{ MeV})/N_{TOT} = 2.6 \times 10^{-3}$$

A clear definition of the treatment of radiative corrections is <u>needed</u> for V_{US}

$$\Gamma(K_{e3}) \to \Gamma(K_{e3}) \cdot (1+\delta) \qquad \delta = \pm 1\%$$
$$|V_{us}|^2 |f_+(0)|^2 \propto \Gamma(K_{e3})$$

KLOE Agenda for the near future

Finalize studies on present data set to get

Improved K_s semileptonic decay rate and asymmetry Competitive measurement/limit on $K_s \rightarrow 3\pi$ K_L absolute branching ratios to better than 1% Competitive measurement of K_L lifetime Competitive measurement of K^{\pm} lifetime V_{us} , V_{us} , V_{us}

 Start new long data taking with higher luminosity → 1–2 fb⁻¹ Improve all above Interferometry measurements Measure CPV parameters in K_L decays