NLO QCD Corrections to s-channel Single Top Quark Production and Decay at the Tevatron

Qing-Hong Cao

Michigan State University

TeV4LHC workshop, Fermilab, Sep. 16-18

Outline

- Single top production in the SM
 - Single top quark production in the SM
 - Categorizing s-channel single-top processes
 - Methods used in our NLO calculation
- 2 Acceptance
 - Jet finding algorithm and kinematics cuts
 - Acceptance of inclusive two-jet events
- 3 Kinematical distributions
 - Kinematical distributions of the final objects
 - Event reconstruction
 - Kinematical and spin correlations
 - Background to SM Higgs searching

Outline

- 1 Single top production in the SM
 - Single top quark production in the SM
 - Categorizing s-channel single-top processes
 - Methods used in our NLO calculation
- 2 Acceptance
 - Jet finding algorithm and kinematics cuts
 - Acceptance of inclusive two-jet events
- 3 Kinematical distributions
 - Kinematical distributions of the final objects
 - Event reconstruction
 - Kinematical and spin correlations
 - Background to SM Higgs searching

Single top quark production in the SM

- Single top quarks are produced at hadron colliders through interactions involving a W boson and b quark. Thus, $\sigma \propto |V_{tb}|^2$.
- At tree level there are three modes:
 - s-channel W exchange
 Large rate at Tevatron Run II, small rate at LHC
 - t-channel W exchange

 Dominant rate at Tevatron Run II and LHC
 - Wt associated production
 Very tiny rate at Tevatron Run II, large rate at LHC
- It is very important to understand the acceptances at NLO, including the QCD corrections to both single top quark production and decay.

Categorizing s-channel single top quark processes

• We separate the single-top processes into smaller gauge invariant sets to organize our calculations.

- includes soft + virtual and real emission corrections.
- Keeping track on each individual contribution is useful to compare event generators with exact NLO predictions.

Methods used in our NLO calculation

- To link the top quark production with its decay and also preserve the spin correlation between the final state particles, the narrow width approximation is usually adopted.
- Narrow width approximation (NWA): fixed top quark mass
 - It does NOT work well in s-channel single-top process because the PDF luminosities drop very fast in the relevant $x \simeq \frac{m_t}{L/\xi} \sim 0.1$ range.
- The "modified" narrow width approximation (MNWA) is adopted in our calculation.
 - Generate Breit-Wigner distribution of the intermediate state top quark mass in phase space.
 - Use the generated top quark mass to calculate the matrix elements.

Inclusive s-channel single-top cross section

The branching ratio of $t \rightarrow bW^+(\rightarrow e^+\nu)$ is included.

Use CTEQ6M1 PDF

		MNWA	NWA				
	σ	Fraction of	σ	Fraction of			
	(fb)	NLO (%)	(fb)	NLO (%)			
Born Level	31.2	65.0	23.1	64.5			
$O(\alpha_s)$ INIT	10.7	22.3	7.3	20.4			
$O(lpha_s)$ FINAL	5.5	11.5	5.0	14.0			
$\mathcal{O}(lpha_s)$ SDEC	0.57	1.19	0.42	1.17			
$O(lpha_s)$ sum	16.8	35.0	12.7	35.5			
NLO	47.9	100	35.8	100			

The INIT contribution dominates in the $O(\alpha_s)$ contributions.

Methods used in our NLO calculation

• Phase space slicing method with one cutoff (s_{min}) is used to regularize both soft and collinear singularities.

Inclusive s-channel single top quark cross section at Tevatron with $\mu_R=\mu_R=m_t$ for $m_t=178$ GeV. The decay branching ratio $t\to bW^+(\to {\rm e}^+\nu)$ is included.

Our calculation does not depend on the theoretical cutoff s_{min} .

In our calculation, $s_{min} = 5 \,\mathrm{GeV}^2$.

Outline

- Single top production in the SM
 - Single top quark production in the SM
 - Categorizing s-channel single-top processes
 - Methods used in our NLO calculation
- 2 Acceptance
 - Jet finding algorithm and kinematics cuts
 - Acceptance of inclusive two-jet events
- 3 Kinematical distributions
 - Kinematical distributions of the final objects
 - Event reconstruction
 - Kinematical and spin correlations
 - Background to SM Higgs searching

Jet finding algorithm and kinematical cuts

- The cone jet algorithm is used to define the infrared safe observables.
- Smaller $|p_Z(\nu)|$ of two-fold solutions is used to reconstruct the W boson ($\sim 70\%$ efficiency).
- Basic kinematical cuts:

 To understand the impact of kinematical cuts on the acceptances, two sets of cuts are considered:

 $\begin{array}{lll} \text{loose cuts:} & \text{tight cuts:} \\ & \eta_{\ell}^{\max} = 2.5 & & \eta_{\ell}^{\max} = 1.0 \\ & \eta_{cut}^{\max} = 3.0 & & \eta_{cut}^{\max} = 2.0 \\ & R_{cut} = 0.5 & R_{cut} = 1.0 \end{array}$

4 D F 4 B F 4 B F F B

Acceptances of inclusive two-jet events

$t\bar{b}+t\bar{b}j$	σ [fb]		Acceptances (%)		
	LO	NLO	LO	NLO	
(a)	22.7	32.3	73	64	
(b)	19.0	21.7	61	46	
(c)	14.7	21.4	47	45	

(a): loose cuts
$$\eta_{\ell}^{max}=2.5, \, \eta_{j}^{max}=3.0$$
 and $R_{cut}=0.5$

(b): loose cuts
$$\eta_\ell^{max}=2.5,~\eta_j^{max}=3.0$$
 and $R_{cut}=1.0$

(c): tight cuts
$$~~\eta_{\ell}^{\rm max}=1.0,~\eta_{j}^{\rm max}=2.0$$
 and $R_{cut}=0.5$

- The acceptances are sensitive to the kinematical cuts.
 - A large R_{cut} reduces the acceptance significantly because more events fail the lepton-jet separation cut.
 - With tight cuts, LO and NLO acceptances are almost the same.
 - With loose cuts, LO and NLO acceptances are quite different.
 - ⇒ cannot use k-factor with LO kinematics
 - $\implies \Delta\sigma \sim 10\%, \quad \Delta |V_{tb}| \sim 5\%$
 - ⇒ Important to have full NLO kinematics
- To maximize the acceptance, the loose cuts (a) are used in the following study.

Outline

- Single top production in the SM
 - Single top quark production in the SM
 - Categorizing s-channel single-top processes
 - Methods used in our NLO calculation
- 2 Acceptance
 - Jet finding algorithm and kinematics cuts
 - Acceptance of inclusive two-jet events
- 3 Kinematical distributions
 - Kinematical distributions of the final objects
 - Event reconstruction
 - Kinematical and spin correlations
 - Background to SM Higgs searching

Final object distributions

- Lepton and ∉_T distributions are not sensitive to NLO QCD corrections.
- b and \bar{b} distributions

NLO corrections broaden the LO distributions and shift the peak position to lower valule.

b and \bar{b} are sensitive to DEC and FINAL contributions, respectively.

INIT contribution dominates over FINAL and DEC.

- \implies soft gluon resummation
- ⇒ improve the prediction on kinematical acceptance

Top quark reconstruction

- The two b-jets in the final state cannot be distinguished experimentally (by detectors).
- Thus, a prescription is needed to identify the correct *b* in order to reconstruct top quark event.
- Best-jet algorithm (to identify decay products from t)
 - Jet (or 2-jet system) which gives an invariant mass closest to 178 GeV, when combined with W boson.
 Loop over all jets, reconstruct invairant mass of W-jets system
- Leading-jet algorithm
 - highest p_T jet in the event as "b-jet".

b identification efficiency

• fraction of picking up correct b

best-jet algorithm: 80% Leading-jet algorithm: 55% reconstructed top quark mass

The best-jet algorithm shows higher efficiency than the leading-jet algorithm.

Top quark (W + best-jet) distributions

Using the best-jet results in distributions that are very similar to those obtained using the true b (or b+g) from the top quark decay.

Kinematical correlation between b and \bar{b}

• At Born level, b (best-jet) and \bar{b} (non-best-jet) are highly correlated.

- At NLO
 - Transverse momentum difference is not largely affected.
 - The $O(\alpha_s)$ corrections have a larger effect on the pseudo-rapidity difference.
 - The additional gluon radiated from FINAL and DEC corrections tends to weaken the correlation between b and \bar{b} .

Top quark polarization

- In SM, the top quark produced in single-top event is highly polarized.
- Two bases for polarization:
 - Helicity basis
 Top quark spin is measured along the top quark direction of motion in the c.m. frame of (reconstructed top + non-best-jet).
 - Optimal basis (maximal spin correlation)
 Taking advantage of the fact that top quark is highly polarized along the direction of d-type quark (predominantly, from anti-proton).

Top quark polarization

Helicity basis

Optimal basis

$$\cos\theta_{hel} = \frac{\vec{p_t} \cdot \vec{p_\ell}^*}{|\vec{p_t}| \cdot |\vec{p_\ell}^*|}$$

 $\vec{p_t}$: three-momentum defined in c.m. frame of the two incoming partons

 $\vec{p_{\ell}}^*$: charged lepton three-momentum defined in rest frame of top quark.

$$\cos heta_{opt} = rac{ec{p}_{ar{p}}^{\star} \cdot ec{p}_{\ell}^{\star}}{\left|ec{p}_{ar{p}}^{\star}
ight| \cdot \left|ec{p}_{\ell}^{\star}
ight|}$$

 $\vec{p}_{\vec{p}}^{\star}$: anti-proton three-momentum in the rest frame of top quark \vec{p}_{ℓ}^{\star} : charged lepton three-momentum in the top quark rest frame.

Top quark polarization

• To quantify the spin correlation, we define the degree of polarization \mathcal{D} and the fraction of polarization \mathcal{F} ,

$$\mathcal{D} = \frac{\textit{N}_{-} - \textit{N}_{+}}{\textit{N}_{-} + \textit{N}_{+}}, \qquad \mathcal{F} \mp = \frac{1 \pm \mathcal{D}}{2}.$$

		\mathcal{D}		\mathcal{F}	
		LO	NLO	LO	NLO
Helicity	Parton level	0.63	0.58	0.82	0.79
	Reconstructed events	0.46	0.37	0.73	0.68
Optimal	Parton level	-0.96	-0.92	0.98	0.96
	Reconstructed events	-0.48	-0.42	0.74	0.71

- 1. The strong spin correlation at parton level is smeared out after event reconstruction due to the imperfect *W*-reconstruction.
- 2. With t-reconstruction, both bases give about the same fraction of polarization.

Intrisic background to SM Higgs searching

• Invariant mass of (b jet and \bar{b} jet)

Angular distribution of $\cos \theta_b$ in $b\bar{b}$

SM Higgs searching channel

 $115 < m_H < 130 \,\mathrm{GeV}$

- The DEC contribution flattens out the $O(\alpha_s)$ corrections compared to Born level ⇒ closer to Higgs signal distribution ⇒ This becomes more important as
 - shape is concerned.

Summary

- In the s-channel single-top process, the initial state contribution dominates the acceptances in all the single particle inclusive distributions.
- With loose kinematical cuts to maxmize the acceptances, the full NLO kinematics needs to be studied. (A constant K-factor with LO kinematics won't work.)
- The best-jet algorithm is better to reconstruct top quark event in the s-channel single-top process.
- Higher order corrections change the kinematical and spin correlations largely. At NLO, the optimal basis give about the same fraction of polarization as the helicity basis.
- NLO QCD corrections to s-channel single-top process is important to SM Higgs boson search via WH production. In particular, DEC contribution has to be included to make more reliable background prediction.

Summary

- Ntuple files of this NLO calculation will be made available for those who are interested.
- A similar study at LHC is in progress.
- The phenomenological study of the exclusive three-jet event will be discussed in Reinhard's talk.