Theoretical Challenges (not just) for a Measurement of M_W at the Tevatron and LHC

- 1. Motivation
- 2. Status of Theoretical Calculations
- 3. What remains to be done
- 4. Reviving the M_T^W/M_T^Z Ratio Method for the LHC
- 5. Conclusions

Ulrich Baur

State University of New York at Buffalo

1 – Introduction

- Precise measurements have to be matched by precise theoretical predictions
- Expectations for electroweak measurements in Run II of the Tevatron:
 - $\sim \delta M_W \approx 40$ MeV per channel and experiment for 2 fb⁻¹

 $\ll \delta \Gamma_W \approx 50$ MeV per channel and experiment for 2 fb⁻¹ from tail of transverse mass distribution

- $rac{\sim}{\sim} \delta \sin^2 \theta_W \approx 6 \times 10^{-4}$ per channel and experiment for 10 fb⁻¹
- $\gg W/Z$ cross section ratio, \mathcal{R} , to $\approx 0.5\%$ (extract Γ_W)
- use σ_W as a luminosity monitor
- most important of these measurements: M_W rightarrow together with m_{top} determines indirect bounds on Higgs boson mass

- For these measurements, it is necessary to fully understand QCD and EWK radiative corrections to W and Z production
- QCD corrections: in good shape
 - $\mathfrak{O}(\alpha_s^2)$ for cross section
 - resummed W and $Z p_T$ distributions are known (RESBOS)
- EWK corrections
 - rightarrow electroweak corrections shift W and Z masses by $\mathcal{O}(100 \text{ MeV})$
 - \ll same for Γ_W from tail of transverse mass (M_T) distribution
 - I most of the effect comes from final state photon radiation
 - \sim however, for anticipated precision it is important to understand the complete $\mathcal{O}(\alpha)$ corrections
 - \sim need to understand EWK corrections for W and Z production:
 - \rightarrow Measuring M_Z and Γ_Z helps to calibrate detector

2 – Status of Theoretical Calculations

- The complete O(α) corrections to W and Z boson production are now known (Dittmaier, Krämer, UB, Wackeroth et al.) and available in form of parton level MC programs (WGRAD and ZGRAD)
- highlights:
 - \Leftrightarrow EW radiative corrections significantly change the shape of the W transverse mass M_T distribution
 - \Leftrightarrow this leads to a shift in the W mass extracted from data
 - \Leftrightarrow for $M_T < M_W$, the contributions from non-resonant diagrams, such as the WZ box diagrams is negligible
 - The non-resonant contributions become large and negative above the W resonance region (proportional to $\alpha \log^2(\hat{s}/M_W^2)$, Sudakov logs)

• the non-resonant radiative corrections shift the W width extracted from the high M_T tail by

 $\delta\Gamma_W\approx-7.2\;{\rm MeV}$

- $\mathcal{O}(\alpha)$ correction to Z production qualitatively similar to W case:
 - \Leftrightarrow affect the Breit-Wigner shape of Z resonance
 - \Leftrightarrow shift the Z mass; the effect is about a factor 2 larger than in W case (both leptons can radiate photons)
 - the purely weak corrections become large and negative for large di-lepton invariant masses
 - Include $O(G_F^2 m_t^2 M_W^2)$ corrections to sin² θ_{eff} to ensure that same theoretical input as in LEP analysis is used

- WGRAD / ZGRAD do not include QCD corrections
- RESBOS does not include electroweak radiative corrections
- for W mass analysis one needs a calculation which includes both
- first step in that direction: RESBOS-A (Cao, Yuan)
 - rightarrow RESBOS + final state photon radiation from W decay lepton (dominant contribution to W mass shift)

• impact on transverse momentum distribution of lepton and M_T distribution

- effect of combined QCD \oplus EWK corrections on lepton p_T distribution is \neq LO + QCD corr. + EWK corr
- but effect of combined QCD \oplus EWK corrections on M_T distribution is \approx LO + QCD corr. + EWK corr:

reason: M_T distribution is invariant under transverse boosts to first order in velocity

- since final state photon radiation shifts W mass by $\mathcal{O}(100)$ MeV:
 - \Leftrightarrow need to worry about multiple (final) state photon radiation in Wand Z production
 - \Leftrightarrow effect should be more pronounced in Z case since both final state leptons radiate
 - Two photon radiation is known to significantly change the shape of the $m(\ell \ell)$ and M_T distributions (UB, Stelzer)

- recent progress in incorporating multi-photon radiation: two approaches
 - YFS exclusive exponentiation (Jadach, Placzek)
 - \rightarrow currently only at parton level and for W decay
 - \rightarrow procedure used is gauge invariant
 - QED structure function approach (Montagna et al.)
 - \rightarrow only final state corrections are presently incorporated
 - \rightarrow procedure used is **not** gauge invariant
 - → however, terms violating gauge invariance are (probably) numerically small (< 0.1%)</p>
- Montagna et al. calculate shift in M_W using simplified detector model:
 - → combine *e* and γ momenta for $\Delta R(e, \gamma) < 0.2$
 - → reject μ events if $E_{\gamma} > 2$ GeV and $\Delta R(\mu, \gamma) < 0.2$

- Shift of M_W caused by multi-photon radiation is about 10% of that caused by one photon radiation
- ✓ Note: absolute value of shift caused by $O(\alpha)$ corrections smaller than value observed by CDF/DØ, due to simplified detector model
- \Leftrightarrow expect larger shifts in Z case (two final state radiators)

3 – What remains to be done

- we plan to incorporate multi-photon effects in WGRAD and ZGRAD using a YFS approach similar to that used by Jadach et al.
- need more complete calculation of QCD⊕EWK corrections; RESBOS-A is only the first step
- weak corrections become large and negative at large transverse masses (W) or di-lepton masses (Z) (Sudakov logs prop. to α log(ŝ/M²_{W,Z}))
 at LHC energies, these terms have to be resummed (not done yet)

- important for new physics searches:
 - example: KK excitations of W boson: a slight reduction in cross section could signal a heavy KK excitation beyond reach for direct production (Polesello, Prata)

eν

4 – Reviving the M_T^W/M_T^Z Ratio Method for the LHC

- method goes back to W. Giele, S. Keller, M. Rijssenbeek, and S. Rajagopalan; recently reconsidered for LHC by Alexander Schmidt (Karlsruhe) (for μ final state only)
- basic idea:
 - \Leftrightarrow use ratio of W to Z transverse masses
 - advantage: many systematic effects cancel in ratio
 - ✓ interesting for LHC: don't need to know detailed detector response
 → can do M_W measurement more quickly?
 - rightarrow disadvantage: statistical uncertainty dominated by Z statistics
 - rightarrow must scale Z mass down to M_W
 - \Leftrightarrow extract M_W/M_Z and take M_Z from LEP measurement

- need to correct for different resolutions, efficiencies and acceptances in W (ν in final state) and Z case (2nd charged lepton in final state)
- proof of principle: DØ Run I analysis

• ratio method:

```
M_W = 80.115 \pm 0.211 \text{ (stat.)} \pm 0.050 \text{ (syst.)} \text{ MeV}
```

```
• M_T line fit (DØ only):
```

```
M_W = 80.440 \pm 0.070 \text{ (stat.)} \pm 0.096 \text{ (syst.)} \text{ MeV}
```

- larger statistical, but much smaller systematic uncertainties
- ratio method competitive for ≥ 15 fb⁻¹ at Tevatron (Snowmass 2001)
 ∞ not so interesting

• LHC (A. Schmidt):

- expected uncertainty: $\delta M_W \approx 10 \text{ MeV}$ for 10 fb⁻¹
- from M_T distribution: $\delta M_W \approx 15$ MeV for 10 fb⁻¹. To achieve this: must know lepton energy scale to 0.02%, ie. solenoid field to $\sim 0.1\%$ and alignment locally to $\sim 1\mu m$

ratio method shows clear advantage

5 – Conclusions

- Calculations of the full $\mathcal{O}(\alpha)$ corrections to Z and W production now exist
- These calculations are essential ingredients for Run II and LHC precision electroweak measurements
- the electroweak corrections become large at high energies
- in the W case they will play a role in the determination of the W width from the tail of the transverse mass distribution
- need unified generator which includes resummed QCD corrections,
 O(α) EWK corrections and resummed final state photon radiation effects
- the M_T^W/M_T^Z ratio method looks promising for the LHC reconsider for Run II?