

Dijet ∆Φ and Parton-Shower Matching

Marek Zieliński University of Rochester

In collaboration with: Michael Begel, Pavel Demine, Alexander Kupčo, Christophe Royon, Markus Wobisch

What is $\Delta \Phi$? Why is $\Delta \Phi$ of interest?

- △Φ is the azimuthal opening angle between the two leading jets
- $\Delta \Phi$ distribution is sensitive to a wide spectrum of radiation effects
 - Back-to-back production of two jets gives ΔΦ=π
 - → Soft radiation: ΔΦ ~ π
 - → Hard radiation: $\Delta \Phi < \pi$
 - → At least 4 jet configurations for $\Delta \Phi < 2\pi/3$ (3-jet "Mercedes")
- Ideal testing ground for matching procedures to combine MC samples with different jet multiplicities

Experimental Motivation

 Observable: ΔΦ distribution between the two leading jets normalized by the integrated dijet cross section

$$rac{1}{\sigma_{_{
m dijet}}} \cdot rac{d\sigma_{_{
m dijet}}}{d\Delta \Phi}$$

- Advantages:
 - → ΔΦ is a simple variable, uses only the two leading jets
 - No need to reconstruct any other jets!
 - → Jet direction is well measured
 - Reduced sensitivity to jet energy scale

- Data analysis:
 - → Central jets |y| < 0.5</p>
 - → Second-leading $p_T > 40$ GeV
 - → Leading jet p_T bin thresholds:
 ◆ 75, 100, 130, 180 GeV
- More details in M. Wobisch talk yesterday
- Results submitted to PRL yesterday
 - → hep-ex/0409040

$\Delta \Phi$: Comparison to Fixed-Order pQCD

- Leading order (dashed blue curve)
 clear limitations
 - → Divergence at $\Delta \Phi = \pi$ (need soft processes)
 - No phase-space at ΔΦ<2π/3 (only three partons)
- Next-to-leading order (red curve)
 - Good description over the whole range, except in extreme ΔΦ regions

$\Delta \Phi$: Comparison to Parton-Shower MCs

- Testing the radiation process:
 3rd and 4th jets from parton showers
- HERWIG
 - Good overall description!
- PYTHIA
 - ➔ Default: very different shape
 - Sensitivity to ISR
 - Bands: variation of PARP(67)=1.0-4.0
 - ➔ Not sensitive to soft/FSR params
 - See Markus' talk
 - Best value: PARP(67)=2.5
 - Base for the next round of TeV/universal tuning
 - "Tune A-prime"

TeV4LHC Workshop, 17 September 2004

Multi-parton Samples from Alpgen

- We use Alpgen to generate separate samples of exclusive 1...6 parton multiplicities
 - Then process events through PYTHIA to generate parton showers (and full-event aspects if desired)
- Matching between contributions from Matrix Element and Parton Shower jets is required to
 - Eliminate dependence of physical cross-section on generatorlevel cuts
 - Eliminate double counting of congurations where jets arise from both the higher-order parton-level calculation and from hard emission during shower evolution

MLM Matching Prescription

- Generate parton-level conguration for a given multiplicity bin with cuts p_T > p_{T min} and R > R_{min}
- Perform jet showering using HERWIG or PYTHIA
- Process showered event before hadronization with a jet algorithm
- Match partons and parton-shower jets a jet can only be matched to a single parton
 - \rightarrow Exclusive: Every parton matched to a jet with N_{jet} = N_{parton}
 - → Inclusive: All partons matched to jets
- Combine exclusive event samples (constant luminosity) to obtain an inclusive sample containing events with all multiplicities
 - → X+N_{jet} = X+0 j_{exc} +X+1 j_{exc} +...+ X+5 j_{exc} + X+6 j_{inc}
 - → Here, X=none, but cases when X=W or X=Z are of great interest

$\Delta \Phi$: First comparison to MLM-matched Alpgen

- Data are fully corrected for experimental effects
- ALPGEN tree-level production for 2 → 2, 3,..., 6 partons
- Use PYTHIA parton showers for matching
 - ➔ implemented in F77 by M. Begel
- Reasonable agreement over whole ΔΦ range – scanning a broad range of jet multiplicities
 - Helps build confidence in matching application for W/Z+jets
 - Comparison to CKKW will be of great interest

TeV4LHC Workshop, 17 September 2004

Conclusions

- ALPGEN + MLM matching describe the ∆Φ distributions fairly well – as do NLO pQCD, HERWIG, and re-tuned PYTHIA
- Same techniques are being used in DØ for generating W+jets and Z+jets samples for top and Higgs studies
- There is a clear area of common interest between QCD, Top/EW and perhaps Higgs working groups – should we form an "interdisciplinary" subgroup?