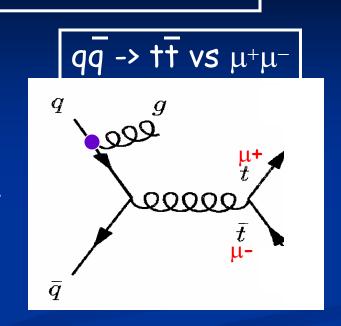
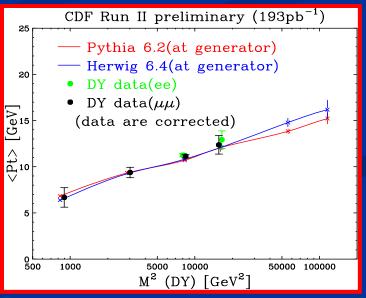

"Top MCs from Tevatron to LHC"

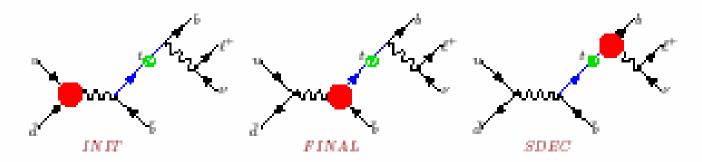
Un-ki Yang University of Chicago


- MC results for top studied for several different MC codes.
 - Pythia, HERWIG, ME, MC@NLO
- Most results were presented for ISR, but other effects such as FSR, scale choices, PDFs, underlying events, fragmentation also considered.
- Motivated choices of processes for tuning parameters
 - Attempt to minimize the effects of the other contributions
 - Physics understanding for what is being used.
- The tuning can be tested with Tevatron data, and establishes the utility of the chosen processes to understand each piece of physics.
- What is being learned is not the tuning parameters, but how to extract them from LHC data.
- Systematic differences between run II & LHC must be understood.

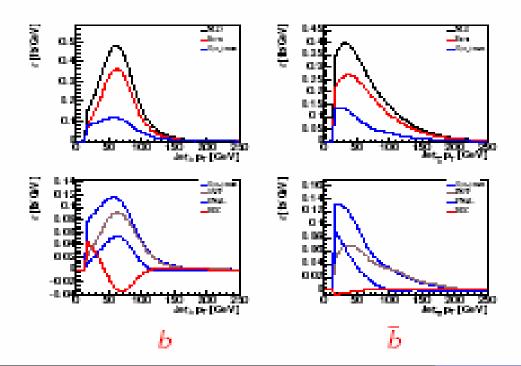

How to tune ISR and it's uncertainty?

- ►ISR effects are governed by DGALP eq. (Q2, Λ_{QCD} , splitting functions, PDFs)
- >Average Pt of the DY [Q2 ~M(DY)2]
 - measure the slope :allows us to estimate the size of ISR at top production region.

The prediction at Q2=Mt²+Pt² is slightly higher than Pythia



"NLO QCD Corrections to s-channel Single Top Quark Production and Decay at the Tevatron"


Qing-Hong Cao Michigan State University

- The s-channel mode of single top production is studied at NLO, including Initial state, final state, and top decay corrections.
- Distributions are studied, and acceptances are computed.
 - NLO changes distributions, and does not allow simple use of k-factors.
 - The "best jet" algorithm assigns which b-jet came from the top decay, taking advantage of the known top mass (from tt) and providing more information which may be useful to extract this signal from background.
- Comparison with WH, H → bb is shown.
 - Single top is a major background to this process.
- This is a very new result
 - It would be nice to see how it fits in with tools currently in use by experiment.
- A similar result is available from Campbell, Ellis, and Tramontano
 - It would be nice to see how they compare.

Final object distributions

- Lepton and ₱₁ distributions are not sensitive to NLO QCD corrections.
- b and b̄ distributions

NLO corrections broaden the LO distributions and shift the peak position to lower valule.

b and \bar{b} are sensitive to DEC and FINAL contributions, respectively.

INIT contribution dominates over FINAL and DEC.

- soft gluon resummation
- improve the prediction on kinematical acceptance

Single Top as a Case Study

- Many in the parallel session expressed interest in single top production.
- Understanding single top is a good bridge from Tevatron to LHC
 - It is a rare, challenging (low S/B) signal at Tevatron like much of the physics we want to do at the LHC.
 - It relies on b-tagging in the final state.
 - It is driven by "initial state" b quarks.
 - It has a final state W boson.
 - The t-channel mode has a forward jet very similar in kinematics to the spectator jets in weak boson fusion Higgs production.
 - Many of its backgrounds (Wbb, Wjj, tt) are common with important signals.
 - It is interesting in its own right top's weak interactions!
- It seems likely that understanding the run II searches and exploring alternatives will result in techniques that can be effectively applied to LHC processes, including Higgs, top, and more.

Organization

Web Page:

- http://www.hep.anl.gov/tait/tev4lhc/topew.html
- Still under construction, but should be up to date soon.
- Lists of topics of investigation and interested people.
- Email to Organizers.
- Announcements for future meetings.

Future Meetings:

 We will plan to meet every month or so to organize and report on progress.

A Great Start!

- More than 50 people signed up for top/EW topics!
- We will organize an automated email list through FNAL.
- Until then, please contact the organizers to be added to the working group discussions.