Summary of Top/EWK group

Cecilia Gerber, Tim Tait, Evelyn Thomson, Doreen Wackeroth

Content of Summary

- Many very interesting plenary talks covered current status of experimental results and theory developments
- Rather than go over the information again, we decided to concentrate on the topics identified during discussions at the parallel sessions as of interest for Tevatron and LHC measurements
- Some personpower already identified to work on some of the outstanding issues
- Not an exhaustive list: will try to identify additional topics before our next working meeting

Outline of talks

- Items identified as of interest for LHC in topics of
 - EWK, including single top (exp)
 - EWK (theory)
 - Top (exp)
 - Top, including single top (theory)
 - + some organization announcements.

Inclusive W/Z x-section measurements

- Overall good agreement with the NNLO calculations
- Experimental uncertainties (~6%) dominated by the luminosity

W \rightarrow I ν as luminosity monitor

- Current method based on σ_{inel} (ppbar)=
 61.7±2.4 mb @ 1.96 TeV (4%)
- Can we do better using the cross section for $W{\rightarrow}l\nu$ measurement?
- Recent paper by Frixione and Mangano (hep-ph/0405130) investigate contributions of uncertainties in acceptance calculation to the W →lv x-sec measurement (currently ~2%)
- Tevatron and LHC would benefit from experimental and theoretical work

Run II differential W/Z cross sections

- $d\sigma(ppbar-W/Z)/d p_T$
- Low Pt end: one of the important inputs for W mass and width measurement
- Need good understanding of the resolution (exp)
- Need understanding of the soft gluon resummation (th)
- High-Pt end: any hints of new physics?
- Need good understanding of backgrounds

Rapidity dependence important at LHC

Can we learn something useful for the LHC by measuring d σ (ppbar->W/Z)/d pT d η ?

W mass measurement

- Well laid out plans for standard method (fit to $M_T(W)$ distribution)
 - Detector calibration/alignment
 - Constraining $P_T(W)$ with $P_T(Z)$
 - Constraining PDFs with measurement of the W charge asymmetry
 - etc.

Expected to reach a precision of 18MeV by the end of Run II for e/mu combined

W mass: Ratio method

- Use ratio of W and Z masses to measure W mass
 - Uncertainties cancel in ratio
 - Statistically dominated by # of Z's

DØ Run 1 Experience (82 pb⁻¹)

Source	Uncertainty (MeV)
Statistics	211
Electron Energy Scale	5
Underlying Event	30
Zero Suppression	5
Hadronic Resolution	15
Electron Efficiency (EC vs CC	20

 Would benefit from taking a new look. Experimentally, investigate if certain detector effects would not cancel due for instance, for nonlinearities in the response.

Single Top searches

 DØ and CDF have set limits on the production of single top production

<u>95% C.L. limits Observed (Expected)</u>		
Channel	CDF (pb)	D0 (pb)
s+t	<17.8 (13.6)	<23 (20)
t	<10.1 (11.2)	<25 (23)
S	<13.6 (12.1)	<19 (16)

Run II (~160 pb⁻¹)

Analyses turns out to be harder (experimentally) than expected from phenomenological predictions Something to keep in mind when making predictions about Higgs search at LHC.

Single top observation

- Current analyses would need several fb⁻¹ for observation
 - Particle ID, b-tagging not as efficient as predicted
 - Large systematic uncertainties from background modelling and detector understanding
 - Analyses methods need optimization to make and observation soon
- Work in progress
 - Ever improving particle ID and understanding of detector effects
 - Accurate models for signal and background benefits from recent NLO calculations
 - Working on multivariate analysis techniques (NN, Matrix Element, ...)
- Need to work with theorists to identify variables that give good signal-background separation - not just at parton level, but for experimental observables.

Preliminary List of topics identified

- 1) VB Asymmetries (input to PDFs)
- 2) Differential VB x-sections ($d\sigma/dp_T d\eta$)
- 3) W mass
 - a) $M_T(W)$ fit method needs 1 & 2, LHC benefits from 2
 - b) Ratio method, does uncertainty really scale with number of Z's? (detector effects)
- 4) W cross section as normalization to calculate luminosity
- 5) Single top: good example of a place where cooperation with phenomenologists is needed to make an observation soon.