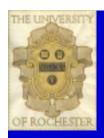

Challenges of hadron colliders

Regina Demina
University of Rochester
09/16/04

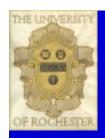
Outline

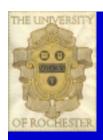
- LPC at Fermilab and workshops
- Limiting factors
- Detector performance and physics objects
 - Lessons of commissioning
 - Calorimeter, jets and missing energy
 - Muons
 - Tracking and b-tagging
- Computing and Monte Carlo
- Sociology and politics
- Outlook



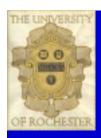
Fermilab LHC physics center

- Links from http://www.uscms.org/LPC/LPC.htm
- Aug 3,4 2004 Tracking Workshop
- April 14,15 2004 Muon Workshop
- <u>Jan 28,29 2004 Jet/Met Workshop</u>
- Photons/electron to be announced

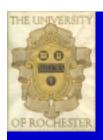



Workshops

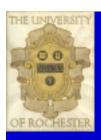
- Very informative presentations
- Might be even more useful to promote communications between CDF and DØ than between Tev and LHC
- Almost therapeutic value of venting out the issues that long waited to be talked about
- In this talk slides/ideas taken from
- Song Ming Wang, I. Iashvili, B. Heinemann, D. Denisov, K.Bloom, F. Rizatdinova, M. Herndon, G. Watstts, T. Diehl...


LHC Physics Center

- Right now main activity is concentrated on understanding low level objects in CMS software
- 1st volume of physics TDR
- Some of the LHC ideas can be tried in Tevatron environment
- Working groups:
 - <u>LPC Offline Coordinators</u>: Liz Sexton-Kennedy and Hans Wenzel
 - Tracking: Kevin Burkett and Sasha Khanov
 - Electron/Photon: Yuri Gershtein and Heidi Schellman
 - Muon: Eric James and Martijn Mulders
 - Jet/Met: Rob Harris and Marek Zielinski
 - Trigger: Sridhara Dasu and Stephan Lammel
 - Simulation: Daniel Elvira and Boaz Klima


Limiting factors for Tevatron

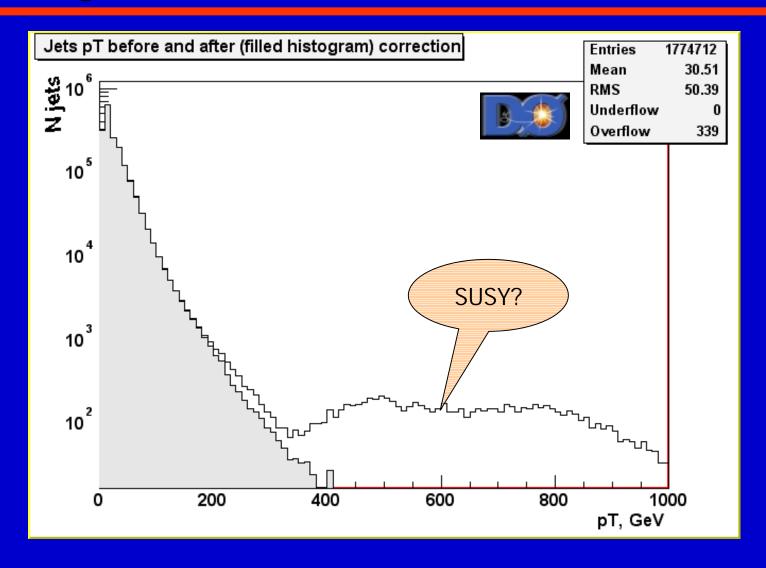
- Run 2 $T_0 = March 2001$
- First publications from CDF and D0 2004
- Why did it take 3 years?
- Very non-scientific survey
- Asked CDF and DØ physics conveners
- What were the limiting factors for the first physics publication in Run 2 in your group?
- Thanks for the input:
- S. Lammel, B. Heinemann, D. Denisov, G. Borisov, V. Buescher, I. Iashvili, J-F. Grivaz, G. Watts, E. Thompson, J. Konigsberg


Limiting Factors

- What were the limiting factors for the first physics publication in Run 2 in your group?
- No clear leading limitation (is it good?)
- Detector (and accelerator) performance
 - Calorimeter calibration (CDF and D0),
 - Alignment (tracker and calorimeter)
 - Luminosity delivered by Tevatron (too low at start, too high now?)
 - Tracking not so much,
 - Muons no complains
- Maturity of reco algorithms
 - Performance and speed
- Complexity of the software, reliability of Monte Carlo (and availability of samples)
- CPU, speed and ease of data access, data format
- Social issues and politics

Lessons of commissioning

- Definition of T_0 is the main reason for 3 years
- Chris Hill (UCSB) in charge of CDF silicon commissioning presentation to CMS silicon group
- CDF Si installed 01/01 cabling completed 05/01
- It's hard to cable the detector while taking physics data, it's hard to commission the detector while taking data
- Premature emphasis on physics was counter productive
 - Limits resources
 - Hard to schedule access, special runs
 - Safety, reliability, coverage, trigger rates may not be compatible goals
- Politics ("soviet style reporting upstairs") is a major effect and I expect it would be even more so in LHC

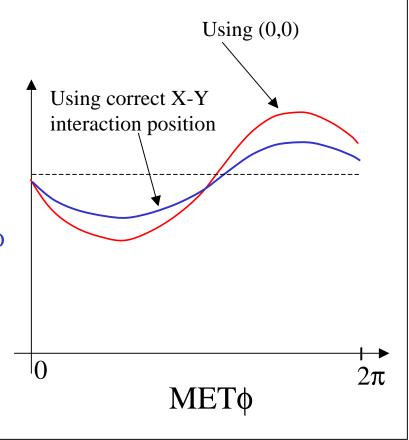


Calorimeter, Jets, Met

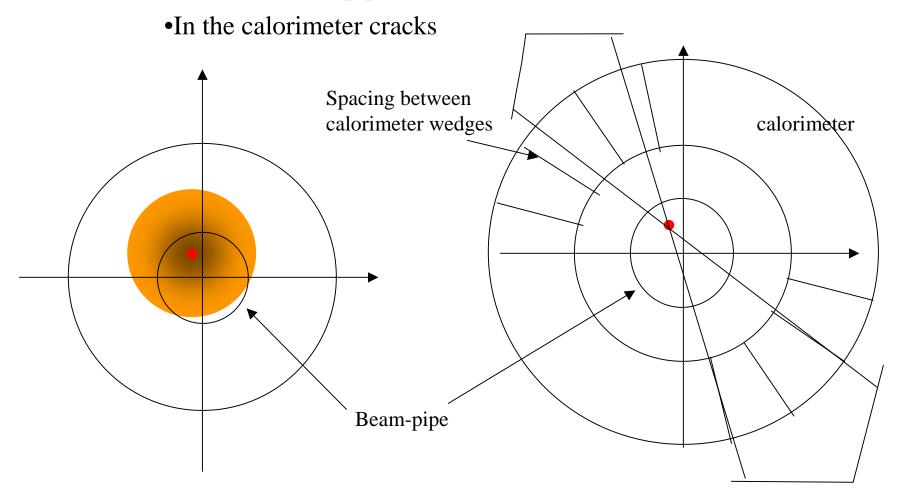
- Both calorimeters essentially recycled from Run 1
- Still calorimeter calibration is the 1st issue to be mentioned in detector performance
- Monitoring of the data quality is the key
 - Important to have tools ready
 - Dedicated manpower (recognized and well promoted)

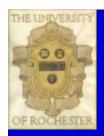
Jet P_T Distribution Before and After Steps 1,2,3.

in average 2 - 6 bad cells killed per run and 0 – 2 of them are hot (with large occupancy).
Regina Demina, Tev4LHC, Batavia, II


Primary Vertex Position

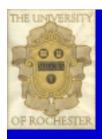
- •Calculation of MET requires the knowledge of the positions of the calorimeter cells/towers w.r.t. the collision point
- •At Tevatron, the σ_z (luminous region) ~ 30 cm
- •Usually at the trigger level the Z position of the collision point for an event is not readily accessible, => assume Z=0


$$\bullet < MET(Z=0) > < MET(Z=VertexZ) >$$

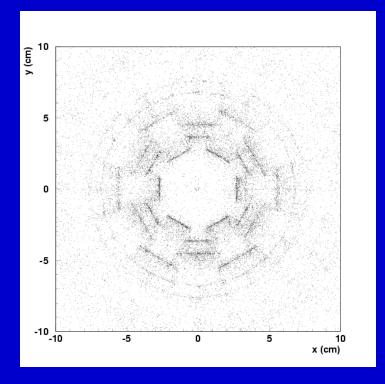

Beam offset in X-Y plane

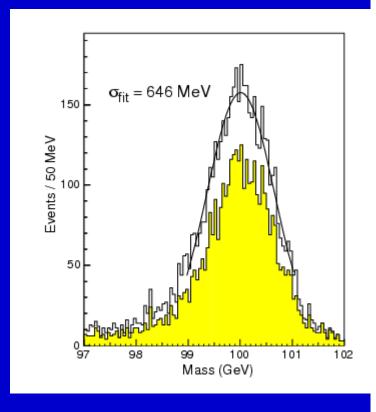
- At CDF, at VertexZ = 0
 - VertexX ~ -1mm, VertexY ~ +4mm (before Sept 2003 shutdown)
- •Observe "sine" shape in the reconstructed MET¢ distribution, when using (0,0) as the interaction point, instead the actual position
- •The MET¢ "sine" shape still remain (smaller) after using the right interaction point in the X-Y plane


- •After Sept '03 shutdown, the beam is now much closer to (0,0) , and MET ϕ is also more flat
- •Still don't know why the corrected MET distribution is not flat
- •Maybe due to:
 - •Non-uniform (in azimuth) energy lost
 - •down the beam-pipe


Muons

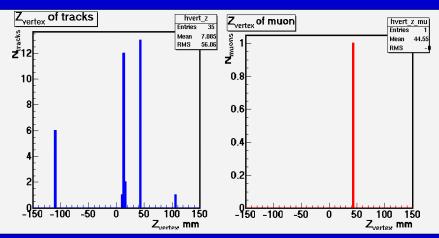
- I will not say much, no complains in this run
- Almost a Cinderella story
- A lot of good physics, e.g. D0 first publication based on events with 4 muons (Doubly charged H)
- B-physics relies on muon trigger

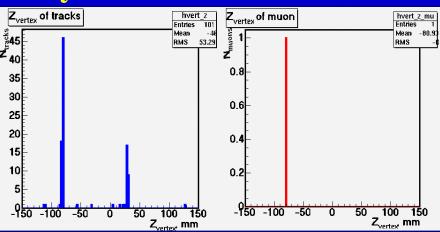

Tracking


- It works really well now
- Both experiments developed ~3 alternative algorithms (it was actually a good idea)
- Slow algorithms
 - A lot of built in flexibility was not used
 - D0 ended up trading a lot of OO programming for a speed
- Alignment is still an issue
- Important to have stand alone tracking for different parts of the system
- Algorithms must not assume perfect defectors
 - Misalingment
 - Debugging

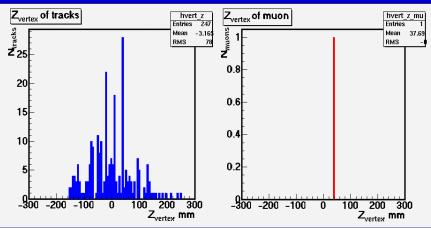
$\mathbf{H} \rightarrow \gamma \gamma$

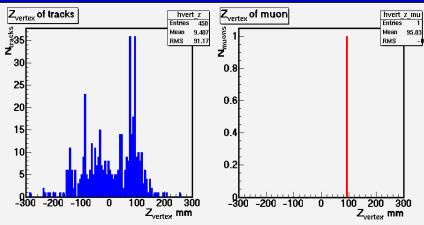
- Due to new CMS tracker design 42.0 (59.5)% of photons convert before reaching barrel (endcap) ECAL
- D0 conversions

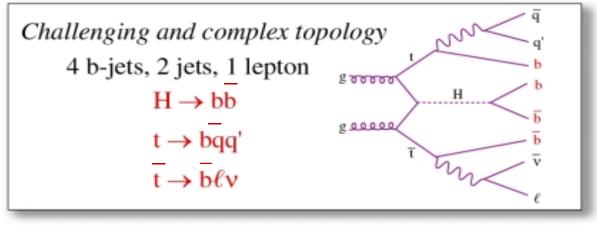

Converted – reco algorithms Nonconverted γ



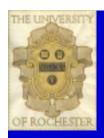
Vertex ID: VBF H→WW→μνjj


Tagging forward jets, vetoing hadronic activity in the central region Muon's vertex – the good parameter for signal tracks determination


Low luminosity

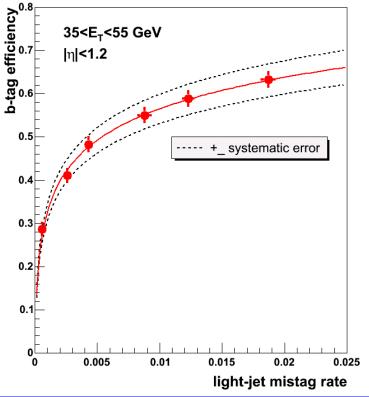


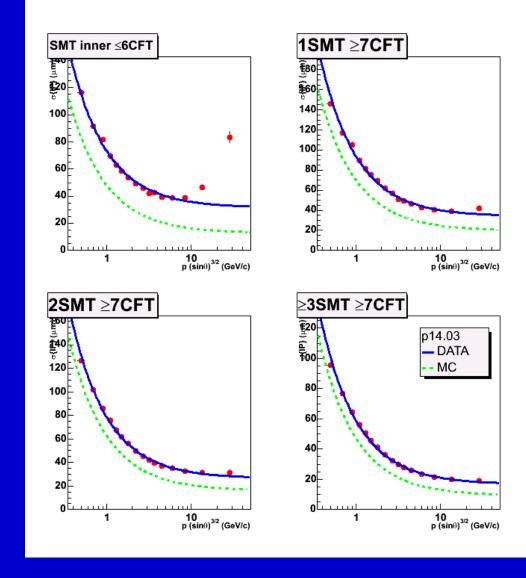
High luminosity

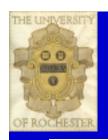


 $\sigma \times BR \approx 300 \text{ fb}$

- Complementary to $H \rightarrow \gamma \gamma$
- Fully reconstructed final state (except v)
- Requires good b-tagging $\varepsilon_b \approx 60\%$, $R_{uds} \approx 100\%$
- Backgrounds:
 - Combinatorial from signal
 - Irreducible ttbb (ttjb, ttjj)
- Signal significance (5σ) :
 - $m_{\rm H} < 120 \; {\rm GeV} \; {\rm needs} \; 100 \; {\rm fb}^{-1}$
 - $m_{\rm H} < 130 \ {\rm GeV \ needs \ 300 \ fb^{-1}}$

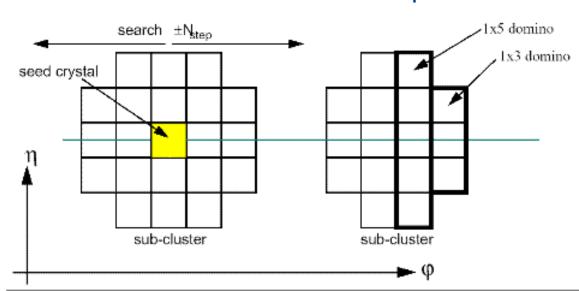

D0 performance plot

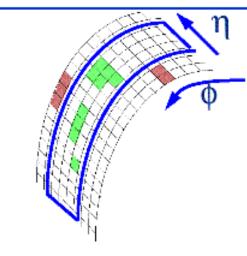


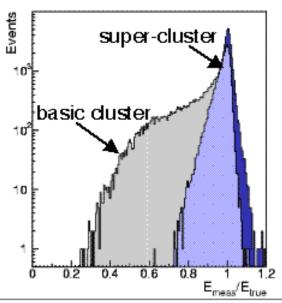

B-tagging

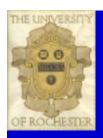
Impact parameter plot
 Green – Monte Carlo
 Blue – fit to data

JLIP performance in p14 real Data

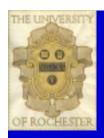




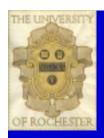

$H \rightarrow ZZ^{(*)}$, $WW^{(*)}$: e reco


- Electron reco in high B=4T
- Shower shape reconstruction
- D0 B=2T, interesting to try
- Brem recovery:

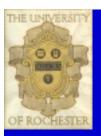
 - Collect all sub-clusters in road → "super-cluster"



Monte Carlo Issues: ttH, H->bb


- Main uncertainty –normalization for ttH, ttbb, ttjj
- Tevatron can play a big role in MC verfication

	CMS	ATLAS
Structure function	CTEQ4L	CTEQ5L
Q^2_{QCD}	$m_{\rm H}^2$ for t ${ m tH}$, t ${ m tZ}$	$(m_{\rm t} + m_{\rm H}/2)^2$
	$p_{t}^{2} + \left(p_{Tt_{1}}^{2} + p_{Tt_{2}}^{2} + p_{Tq_{1}}^{2} + p_{Tq_{1}}^{2}\right)/4 \text{ for } t\bar{t}q\bar{q}$	for all but ttjj
LO cross sections in pb		
ttH(100)×BR _{H→bb}	(1.09) Conservation level of	0.69
$ttH(115) \times BR_{H\rightarrow bb}$	0.65 Generation level c	0.43
ttH(130)×BR _{H→bb}	0.32	0.24
` t̃₹bБ	3.3 (see text)	8.6
tŧjj	507	474
cms: ttZ	0.65	
ATLAS: $gg \rightarrow Z/\gamma/W \rightarrow t$	ŧŧbb	0.9


Sociological issues

- A very big complain:
- Lack of involvement of senior people
 - Interference with LHC (LC)
 - Complexity of software, switching to C++
 - People do not feel comfortable if they cannot say "Show me your code!"
 - But actually feed back on physics would make a difference
- Too high standards, perfectionism
 - Run 1, LEP

Outlook

- Streamlining the road to publications in LHC is important for the well being of the field
- Commissioning must be decoupled from physics runs
- A good line of communication and experience transfer is established between LHC (CMS) and Tevatron experiments - LPC
 - Several new algorithm approaches can also be tested in TeV environment
- Monte Carlo verification in Tevatron

Backup slides