Overview of the Tevatron Physics Program

Ashutosh Kotwal Fermilab / Duke University

(for the CDF and D0 Collaborations)

TEV4LHC Workshop Fermilab, 16 September 2004

Introduction

- Very rich Tevatron program: probes physics at the highest Q^2
 - Direct searches
 - Top physics
 - High E_T jets
- ...to intermediate Q^2
 - Precision electroweak physics
- ...to low Q^2
 - B and charm physics
- Selected topics discussed today span the range of
 - Statistical and systematic contributions to precision
 - Importance of tracking, calorimetry and particle identification
 - Connections to LHC physics

Outline

- Top quark physics
 - Cross sections in lepton+jets and dilepton channels
 - Top quark mass
- Electroweak physics
 - W boson mass
 - Pair production of gauge bosons
 - High mass Drell-Yan forward-backward asymmetry
- QCD physics
 - Jet and photon cross sections
- SM Higgs search
- Other direct searches
 - NonSM Higgs
 - SUSY and exotica
- B physics
 - B mixing
 - Rare decays

Top Signals

- Is it the standard model top quark? Or does its large mass give it access to new physics?
- Probes:
 - Spin structure: W helicity in top decays
 - Event topology
 - Comparing cross sections in different decay modes

Top Cross Sections, lepton + jets channels

• Explore many different strategies: leave no stone unturned

Top Cross Sections Summary

10

20

σ **(pb)**

Probing the *t*W*b* electroweak vertex in top decays:

Statistics-limited, consistent with standard model

Top Quark Mass

- Important standard model parameter, ingredient of indirect Higgs constraint
- Complicated event topology => many fitting techniques, with different sensitivities to modelling
 - Histogram & template-fitting method
 - "per-event" mass extraction method

Top Quark Mass Summary

• Run 2 measurements catching up in precision to latest Run 1 result $(M_t = 178.0 \pm 4.3 \text{ GeV})$

Systematics: jet energy scale (experimental) and gluon radiation (theoretical) need continous improvements to match statistics

Electroweak Physics

- Direct measurement of W boson mass and width
- W and Z boson cross section measurements
 - Extract BR(W-> $l\nu$) from W/Z ratio, lepton universality
 - Establish baseline of detector performance
 - Luminosity measurement technique
- W and Z asymmetries
- Pair production of gauge bosons
 - Fundamental prediction of electroweak gauge theory
 - Establish baseline for multiple lepton-photon-jet-missing E_T final states, relevant for
 - Top physics (WW->dileptons, lv+jets)
 - Higgs search (WZ->lv + bb)
 - Searches (e^{*}, μ^{*}, leptoquarks, SUSY...)

W boson mass

 Radiative corrections to W mass probe a wide range of new physics: SM Higgs, non-SM Higgs, SUSY...anything that couples to the W boson

- Energy / momentum calibration is THE KEY aspect of this measurement
 - Other systematics: QED corrections, parton distribution functions,
 p_T(W) model continue to reduce with improved calculations, tools and judicious use of collider data

W and Z boson mass fits

W boson mass

	Systematic	Electrons (Run 1)	Muons (Run 1)
CDF Run 2 preliminary	Lepton Energy Scale and Resolution	70 (80)	30 (87)
	Recoil Scale and Resolution	50 (37)	50 (35)
	Backgrounds	20 (5)	20 (25)
	Statistics	45 (65)	50 (100)
	Production and Decay Model	30 (30)	30 (30)
	Total	105 (110)	85 (140)

First experience with complete Run 2 analysis of 200/pb

Combined Run 2 uncertainty of 76 MeV already better than Run 1 from CDF (79 MeV) or D0 (84 MeV)

Mass value internally blinded with random offset until cross-checks completed

400/pb on tape: precision of best single measurement (ALEPH, 58 MeV) and combined LEP (42 MeV) within reach

$W\gamma / Z\gamma$

Good agreement with SM in rate and kinematics, giving confidence in photon techniques

D0: σ (Zγ -> *l l* γ) = 3.86 ± 0.46(stat & sys) ± 0.25(lum) pb (SM: 4.3 pb) CDF: σ (Zγ -> *l l* γ) = 5.3 ± 0.6(stat) ± 0.3(sys) ± 0.3(lum) pb (SM: 5.4 ± 0.3 pb)

WW->dileptons

CDF Run II Preliminary - Missing Transverse Energy ∉_T Agreement with SM in WW+Bkgnd 10 rate and kinematics, tight and loose Bkgnd selection cuts 8 Data Events/15 GeV $L = 184 \text{ pb}^{-1}$ Checks top and H->WW background 2 D 20 80 120 40 60 100

140

₽_∓ (GeV)

Drell-Yan Forward-Backward Asymmetry

• Probes new physics at high-mass through interference with SM (linear in coupling strength of new physics α_{new})

• Complementary to cross section based search (quadratic in α_{new})

Higgs and Other Searches

SM Higgs Search

- Associated production: W,Z + H (->bb) for $M_H < 130 \text{ GeV}$
- H->WW for $M_H > 130 \text{ GeV}$

Improvements from: better *b* tagging, using topological (spin 0) information, more channels (Z), mass resolution (Z->*bb* sample very important)

SM Higgs Search

Exploit angular (spin 0) information for H->WW mode

MSSM Higgs Search

Enhanced cross sections, heavy flavors (b, τ) preferred @ high tan β

Doubly-Charged Higgs Search

Predicted by Left-Right Symmetric Model (motivated by neutrino mass) & light in SUSY-LR

SUSY Searches

Stop quark use new Run 2 capability: Time-of-Flight detector

M(stop) > 97–107 GeV @95%CL (LEP limit 95 GeV)

improvements in event time and ToF reconstruction in progress, will suppress backgrounds

Indirect Search: $B_s \rightarrow \mu\mu$ BR proportional to $\tan^6\beta$

SUSY Searches

Indirect Search: $B_s \rightarrow \mu\mu$ BR proportional to $tan^6\beta$

Sensitive to tan $\beta \sim 40$ for BR $\sim 10^{-7}$

World's best limit from D0, CDF & D0 combined limit: BR ($B_s \rightarrow \mu\mu$) < 2.7 x 10⁻⁷ @90%CL Start to limit tan β as more data analysed

SUSY Searches

Chargino-neutralino search using trileptons

One of the golden discovery modes at Tevatron and LHC

Analysis of data already on tape will extend sensitivity beyond LEP

Very-High P_T Physics

B Physics

B_s Mixing Sensitivity

 B_d mixing => prepare machinery for B_s mixing analysis

Flavor tagging at production: maximize effective efficiency εD^2 eg. CDF combined tagger: $\varepsilon D^2 = 1.82 \pm 0.114 \%$

Maximize $c\tau$ resolution $\boldsymbol{\sigma}_{\tau}$

B_s Mixing Sensitivity

$\Delta\Gamma/\Gamma$ in B_s system

Summary

- Run 2 is firmly established, with $>3 \times 1$ data recorded
- Many new results, often already world's best
- Anticipate $\sim 2 \text{ fb}^{-1}$ by 2007
 - 2M leptonic W's and 200k leptonic Z's
- ...and 4-8 fb⁻¹ by 2009
- Continue to build on success, expect much more physics!
- Invaluable experience for LHC