

Heavy flavor tagging and collider searches for stop and sbottom

D. Bortoletto Purdue University

Help from: Rott, Gonzalez- Lopez,
Silvestris, Cucciarelli, Palla, Rozanov,
Wright, Inchliffe, Duperrin, Greenlee,
Guimaraes da Costa, Watts and more daniela bortoletto

TEV4LHC

Outline

Searches for stop and bottom

- Current status at CDF and D0
- Plans at CMS and Atlas
- The role of heavy flavor tagging
 - Algorithms
 - CDF and D0 experience
 - Differences between TeV and LHC
- What CMS and Atlas want to know from the Tevatron?

Third generation squarks

Third generation squarks could be light, due to large mixing

$$\widetilde{\mathbf{q}}_{1} = \widetilde{\mathbf{q}}_{\mathrm{L}} \cos \Theta_{\widetilde{\mathbf{q}}} + \widetilde{\mathbf{q}}_{\mathrm{R}} \sin \Theta_{\widetilde{\mathbf{q}}}$$

Light Sbottom: large tan β

```
Light Stop: large m,
```

Mass matrix mixing term
$$m_q(A_q - \mu \kappa)$$
 $\kappa = \tan \beta$
down type
quarks $\kappa = 1/\tan \beta$
up type
quarks

To suppress FCNC and CP violation might require that first and second generation of squarks is heavy (M~20 TeV)

Stop and sbottom should still be much lighter (M < 1TeV) to maintain naturalness

Cohen, Kaplan, Nelson

quarks

Stop and sbottom searches RUN 1

S

Top to Stop PRD 63, 091101(R) (2001)

$$p\overline{p} \rightarrow t\overline{t} \rightarrow (\tilde{t}\tilde{\chi}_{1}^{0})(\tilde{\overline{t}}\tilde{\chi}_{1}^{0}) \rightarrow (b\tilde{\chi}_{1}^{\pm})\tilde{\chi}_{1}^{0}(\overline{b}\tilde{\chi}_{1}^{\mp})\tilde{\chi}_{1}^{0}$$

ignature: ≥1 lepton, ≥2 jets, **MET**

Stop/Sbottom in c/b+LSP PRL 84, 5704 (2000) PRL 93, 011801 (2004)

 $p\overline{p} \rightarrow \tilde{t} \, \overline{\tilde{t}} \rightarrow (c \widetilde{\chi}_{1}^{0})(\overline{c} \widetilde{\chi}_{1}^{0})$ Signature: $\geq 2 \text{ HF jets, MET}$

Stop in lepton + b-jets PRL 84, 5273 (2000) $p\overline{p} \rightarrow \tilde{t} \, \tilde{\bar{t}} \rightarrow (b \tilde{\chi}_1^+) (\overline{b} \tilde{\chi}_1^-) \rightarrow (b \ell^+ \tilde{\chi}_1^0) (\overline{b} \ell^- \tilde{\chi}_1^0)$ Signature: ≥1 lepton, b-jet (tagged), MET

Stop in MET+ leptons PRL 84, 5273 (2000) PRL 88,171802-1 (2002) $p\overline{p} \rightarrow \tilde{t} \, \overline{\tilde{t}} \rightarrow (bl\tilde{v})(\overline{bl}\overline{\tilde{v}})$

Signature:2 opposite sign leptons, MET

- mSUGRA (m₀,m_{1/2}, A₀, tanβ,μ)
- Most analysis assumed $R_p = (-1)^{3B+L+2}$ conservation \Rightarrow stable LSP \Rightarrow MET
- Few used b-tagging

Sbottom searches Run II $BR(\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0) = 100\%$ CDF Run II search in light sbottom scenario [Z. Phys. C64, 499 (1994)] $BR(\tilde{g} \rightarrow \tilde{b}_1 b) = 100\%$ Spectacular signature: 4 b-jets + MET b-jets + gg **p p** b b 00000 q Ь. MET >35GeV+ jet trigger $m(\tilde{\chi}_1^0) = 60 GeV/c^2$ Fake rate/jet ~0.3% 3 or more jets Efficiency/b-jet 25-40 % **Reject events where jets** Data **Double Tag Method B-Tagging Efficiency** are aligned with the MET × MC • $\Delta \phi$ (Met,1-3.jet)>40° Separate analysis for single and double b-tag Electron Jet ET (GeV

daniela bortoletto

Control regions

Signal region

Prospect for run II

daniela bortoletto

Beyond Minimal SUSY

- Even the MSSM (100+ parameters) may not be general enough.
- For example, the LEP-II bound on the Higgs mass implies that the stop mass is greater than ~ 700 GeV.
 - This would make looking for stops pretty hopeless at run II.
 - It's disturbing because it starts to recreate the hierarchy problem.
- Specific extensions (NMSSM, "Gauge Extended MSSM", "Fat Higgs", etc.) are already appearing to relax this requirement.
 - They often have more states (i.e. Z's, exotic Higgses).
 - There are also often special properties for the new states related to the 3rd family, like enhanced decays to τ, b, and t.
- What about R-parity violation? It still allows the hierarchy solution, though it does give up SUSY dark matter. It's interesting!
- MORAL 1: Keep looking for those stops!
- MORAL 2: Realistic SUSY theories are probably somewhat richer than we naively expect. The first hints may not look like SUSY.

Tim Tait's talk at CDF Collaboration meeting

daniela bortoletto

Expectations at the LHC depend on the scenarios

Proposed Post-LEP Benchmarks for Supersymmetry, M. Battaglia et al. (hep-ph/0106204)

Model	A	B	C	D	E	F	G	H	Ι	J	K	L	M
$m_{1/2}$	600	250	400	525	300	1000	375	1500	350	750	1150	450	1900
m_0	140	100	90	125	1500	3450	120	419	180	300	1000	350	1500
$\tan eta$	5	10	10	10	10	10	20	20	35	35	35	50	50
$\operatorname{sign}(\mu)$	+	+	+		+	+	+	+	+	+	_	+	+
$\alpha_s(m_Z)$	120	123	121	121	123	120	122	117	122	119	117	121	116
m_t	175	175	175	175	171	171	175	175	175	175	175	175	175

Many lead to complicate decay chains.

 $pp \rightarrow \tilde{g} \rightarrow \tilde{b}b$ $\downarrow \tilde{\chi}_{2}^{0}b$ $\downarrow \tilde{\chi}_{2}^{0}b$ $\downarrow \tilde{\ell}^{\pm}\ell^{\mp} \rightarrow \tilde{\chi}_{1}^{0}\ell^{\pm}\ell^{\mp}$ $pp \rightarrow \tilde{g} \rightarrow \tilde{q}q$ $\downarrow \tilde{\chi}_{2}^{0}q$ $\downarrow \tilde{\chi}_{2}^{0}q$ $\downarrow \tilde{\chi}_{2}^{0}q$ $\downarrow \tilde{\chi}_{2}^{0}q$ $\downarrow \tilde{\chi}_{1}^{0}\ell^{\pm}\ell^{\mp} \rightarrow \tilde{\chi}_{1}^{0}\ell^{\pm}\ell^{-}$ $P = 2 \text{ high } p_{t} \text{ isolated leptons OS}$ $P \geq 2 \text{ high } p_{t} \text{ b jets}$ $P = 2 \text{ high } p_{t} \text{ b jets}$ $P = 2 \text{ high } p_{t} \text{ b jets}$ $P = 2 \text{ high } p_{t} \text{ b jets}$ $P = 2 \text{ high } p_{t} \text{ b jets}$ $P = 2 \text{ high } p_{t} \text{ b jets}$ $P = 2 \text{ high } p_{t} \text{ b jets}$ $P = 2 \text{ high } p_{t} \text{ b jets}$

- Scenario has been investigated by CMS. For point B, gluino heaviest sparticle, neutralino is LSP
 - $m(\tilde{g}) = 595 \,\text{GeV}$ $m(\chi_1^0) = 95 \,\text{GeV}$
 - $BR(\tilde{g} \rightarrow \tilde{b}_1 b) + BR(\tilde{g} \rightarrow \tilde{b}_2 b) \approx 27.5\%$
- Fast detector simulation
- Selection starts with dilepton end-point invariant mass distribution

\tilde{b}_{2}					
Decay channel	BR(%)				
$\tilde{\chi}_1^{\pm} t$	34.06				
$\tilde{\chi}_1^0 b$	17.32				
$\tilde{\chi}_{2}^{0}b$	25.04				
$\tilde{\chi}_{3}^{0}b$	0.17				
$\tilde{\chi}_4^0 b$	1.53				
$\tilde{t}_1 W$	2.19				

δη.

BR(%)

Decay channel

- B-tagging used to reconstruct sbottom and gluino decay
- Also used to anti select b-jets for squark reconstruction
- Select b-jet with $E_{b-jet} > 250 \text{ GeV}$: $M(\tilde{\chi}_2^0 b) = (500 \pm 7) \text{GeV}$
- Reconstruction of strongly interacting sparticle possible

Point B:

- first few weeks of LHC running period:
 - reconstruction of squark (resolution ~12%)
- first year:
 - reconstruction of sbottom and gluino (resolutions ~6÷8%)
 - reconstruction of gluino in the squark chain (independent channel)

the LHC- Prague 2003

Point I (tan β**=35)**:

- no reconstruction possible in the leptonic final state even with high accumulated statistics
- tau final state is under investigation

Sbottom from gluino decays at LHC

- The search for sbottom from gluino decay in MET + 2b-tag jets is also interesting for the LHC $BR(\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0) \approx 5\%$ Analysis is just starting
 - for CMS. Huge cross section!!!!

 $BR(\tilde{b}_2 \rightarrow b\tilde{\chi}_1^0) \approx 17\%$

Searches for the stop at the LHC

daniela bortoletto

TEV4LHC

Impact Parameter Methods

- Track Counting Methods
 - Minimum N(good tracks) with IP Significance S_{IP}

$$S_{IP} = \frac{IP}{\sigma_{IP}} > 2 \text{ or } 3$$

Quick optimization and feedback

Probability method

- Estimate probability that tracks come from primary (2D or 3D)
- Computed using S_{IP}<0. The IP is negative if tracks appear to originate from behind PV
- Could be optimized for b, c, u
- Continuous Output {0-1} but tagging efficiency, fakes can be determined for fixed values (1%, 5%)

Secondary Vertex Methods

B-tagging at CDF and D0

Jetprob

- (Probability algorithm)
- **SecVTX** (secondary vertex algorithm)
 - Loose and tight tagger
- Track counting
- Jet Probability method

Secondary Vertex reconstruction Method **Counting Signed Impact Parameter** (CSIP)

$$\mathbf{S}_{\mathrm{IP}}^{\mathrm{RAW}} = \frac{\mathbf{IP}}{\sigma_{\mathrm{IP}}^{\mathrm{RAW}}}$$

- Tag if >2 tracks has S>3
- Tag if >3 traks have S>2
- Jet Lifetime Probability (JLIP)
 - **Probability algorithm** 0
- **Secondary Vertex reconstruction** (SVT)
 - Loose, Medium and Tight for mistag rate of 1%, 0.5%, 0.25% **At1**35
- **Likelihood Method** Approach

$$\mathbf{r}_{i} = \frac{\mathbf{f}_{b}(\mathbf{S}_{IP})}{\mathbf{f}_{u}(\mathbf{S}_{IP})}$$

DO

B-tagging at CDF

Tagging algorithms depends on:

- Hardware performance
- Tracking
- Vertexing
- Alignment
- Retuning must be done after initial detector and reconstruction performance is understood.
 - Hardware changes
 - Improved tracking, primary and secondary vertexing, alignment
 - Hardware performance needed to tune realistic MC
- SeCVTX algorithm developed in run I. Ported to run II in 2000
 - Pass 1: 3 track vertices
 - Pass 2: 2 track vertices

Run II started in APRIL 2001

- ISL cooling
 - April 2003 ISL included in tracking
 - May 2003 ISL and z-side included in SECVTX
- Detector noise on L00
 - L00 to be included in next release (later in 2004)

B-tagging timeline at CDF

- Dec. 2002 SecVtx optimization for 2003 Winter conference:
 - SVX alignment and tracking code not optimal
 - Tight track selection
 - Loose vertex quality cuts
 - Run averaged beamline
- May 2003:
 - Event by event primary vertex with beam line constraint
 - Beam width function of z-position
 - Account beam variation in a run
 - Summer 2003: first top and exotic analysis blessed using SecVtx

Improved Tracking and alignment in Fall 2003

- Loosen track selection
- Development Loose SECVTX for double tag analysis (allow larger fake rate)
- First blessing of double tag analysis Summer 2004

Organizational experience at CDF

- Current b-tagging improvements:
 - tracking up to η~1.2 (IO tracks)
 - More realistic MC simulation with new charge deposition model
 - Better alignment in Z.
- Future: Would like to include forward tracking
- B-tagging is a high level tool built on lower level objects subjected to change

 Maintenance and upgrades are necessary
- Once a b-tagging algorithm is working, it is difficult to motivate people to keep improving it
- Algorithm development at CDF was mostly by top group for top analysis
 - Top mass analysis in all hadronic channel needs very pure b-tagging
- Optimization for searches
 - Improved c-tagging (t \rightarrow c LSP)
 - Or charm rejection
 - Sbottom search largest background is top (which yields b-jets)
 - might need algorithm with high b-tagging efficiency and "sufficient" rejection of light quark jet

Predictions and performance

Predictions and performance

LHC challenges

Luminosity

- Iow-luminosity: 10³³cm⁻²s⁻¹ (first 3 years)
- high-luminosity: 10³⁴cm⁻²s⁻¹
 - ~20 minimum bias events per bunch crossing
 - ~1000 charged tracks per event
- Radius: 2cm 10cm 25cm
- N_{Tracks} 10.0 1.0 0.10 /cm²25ns
- bigger probabilities of jet overlaps.
- LHC detectors have been built for this environment
 - Fine granularity
 - Fast response time
 - Excellent IP resolution
 - 90% reconstruction efficiency for high pt tracks inside jets

How a "real" 2- jet event looks like:

17 superimposed events

$H \rightarrow bb event$ @ high luminosity

daniela bortoletto

LHC challenges

Fine pixel sensors close to beam provide excellent and fast primary vertex reconstruction

layer 2

Track seeding starts from pixel layers Forward SCT

0.19196-04

Mean

 $26 \mu m$

0.01 0.02

zPV(reconstructed)-zPV(MC) /cm/

0.03

0

high lumi – dashed

 z_{PV}

100 100 100

250

200

150

100

50

 σ

 Full tracker resolution 15 μm

Barrel SCT

daniela bortoletto

-0.03 -0.02 -0.01

TEV4LHC

Expected LHC performance

How well will we know the detectors

- Effect of staging in ATLAS
 - no pixel barrel #1
 - no pixel disk #2
 - no CTRT wheels
 - a *b*-layer pitch = $400 \mu m$

time	Inefficie pixels	ency on & SCT	Ineffici <i>b</i> -laye	ency on r pixels	Precision on alignment		
	module	chip	module	chip	pixels	SCT	
Period 1 (months 1-2)	4%	3%	2%	1.5%	100µm	300µm	
Period 2 (months 3-4)	2%	2.5%	1%	1.25%	20 μm	60 μm	
Period 3 (months 5-6)	1%	2%	0.5%	1%	10 μm	30 μm	
Period 4 (months 7-8)	1%	2%	0.5%	1%	5 μm	15 μm	
Period 5 (after?)	1%	2%	0.5%	1%	-	-	

daniela bortoletto

Calibration at the LHC

Large data samples for calibrations:

- ∠→μμ ~1 event/s
 - Calibrate absolute momentum scale (B field)

- Calibrate b-tagging efficiency using top ℓ +jet decay?
 - 2 *b*-jets
 - high cross-section: 2.5 M events
 1 year at low luminosity
 - Predict the value of N_2/N_1 , for different values of ε_b
 - Measure N_2/N_1 in data $\frac{\epsilon_b \propto}{\epsilon_b \propto}$

daniela bortoletto

D/exp

LHC challenges

- What is the effect of the detector response, physics object definitions, calibration, and alignment procedures on the expected performance?
- CMS plans a TDR with feasibility studies of Higgs, SUSY, etc
 - Small number of full analyses in the most realistic possible scenarios
 - Analyses will include backgrounds, misalignment, and miscalibration
- Alignment
 - State of the art techniques ala SLD with 96 pixel elements:
 - Determine 578 corrections x from 2108 coefficients from residual fits C
 - Ax=C where is the A design matrix
 - Find A⁺ such that x=A⁺c minimizes |Ax-C|
 - CMS has 20,000 independent silicon sensors.....

Outlook

- We might find SUSY at the Tevatron ⇒ would give insight for LHC.
- Implementation of TeV analysis in LHC framework, validation of LHC techniques on TeV data might facilitate preparation for discovery
- Questions/ requests:
 - Was the simulation different from the real life at the TeV startup ?
 - Do the b-tagging efficiency and fake rate change with luminosity and # of primary vertices?
 - Micro-DST of the good TeV events with and without b-jets to tests LHC software
 - How much the mis-alignment detector affect the results?

- How do you calibrate the results.. using MC generators, which ones?
- As usual: Hard work is necessary

B-tagging efficiency

- B-tag efficiency depends on
 - b- momentum and lifetime
 - Decay Charge multiplicity
 - Tracking performance (efficiency, resolution, material)

Not a great match to top and exotic physics

Measurement

- Use high statistics, high purity b-jets sample such as electron data
- Both Jets with E_T>15 GeV
- Tag away jet to increase purity
- Measure efficiency in data and MC and correct with a scale factor
- Aim: scale factor S=1
 - **Scale factor** $S = 0.82 \pm 0.06$

Mistagging

- Mis-tagging probability depends on :
 - Jet E_T
 - 🧧 Jet ղ and φ
 - # of tracks in jet
 - Energy in the event
- Determined from the negative rate (-L_{xy}) in jet data. Corrected for material effects and long lived particles
- Build fake matrix
 - Use jet sample collected with different thresholds (20, 50, 70, 100 GeV)
 - Test on 4 jets sample and ΣE_τ >100 GeV
 - Correlation with MET not explored. But is important for searches

Effect on performance

Alignment at Atlas

- Alignment must not degrade any track parameters by 20%
- Precision placement during building: pixels (10/100 μm), strips (50/250 μm)
- X-ray survey determine actual position 10/50 μm
- Continuous monitoring of deformation (scanning interferometer)
- Track alignment gives better local precision
- M(w) <15 MeV ,
 - 1 μm in r-Φ
 - B field to 0.02%
 - Detector Material known to 1%
 - P_{T} resolution to 1%
- Calibration with large sample of $Z \rightarrow \mu \mu$ possible

- Alignment algorithms under development:
 - χ² minimization (ALEPH and SLD)
 - Huge 30,000×30,000 symmetric matrix
 - Iterative track fitting
 - Fit track
 - Plot hit residuals/module
 - Move module

CMS Trigger a b Jet with HLT

- From pixel hits and calorimeters:
 - The seed for tracks reconstruction is created around the LVL1 jet direction
 - Primary vertex is calculated
- Tracks are reconstructed in a cone of ∆R>0.15 around the jet direction
- Tracks are conditionally reconstructed
 - The Jet direction is refined using the reconstructed tracks

SECVTX ALGORITHM

daniela bortoletto

Trigger and systematics

• L1: $\not\!\!E_{T trg} \ge 25 \text{ GeV}$

Backgrounds

Process	Exclusive Single B-Tag	Inclusive Double B-Tag
EWK	$5.66 \pm 0.76(stat) \pm 1.72(sys)$	$0.61 \pm 0.21(stat) \pm 0.19(sys)$
TOP	$6.18 \pm 0.12(stat) \pm 1.42(sys)$	$1.84 \pm 0.06(stat) \pm 0.46(sys)$
QCD	$4.57 \pm 1.64(stat) \pm 0.57(sys)$	$0.18 \pm 0.08(stat) \pm 0.05(sys)$
Total Predicted	$16.41 \pm 1.81(stat) \pm 3.15(sys)$	$2.63 \pm 0.23(stat) \pm 0.66(sys)$

• QCD-multijet

- HF QCD MC Fake
- fake b-tags

Fake b-tags are estimated using parameterization of the neg. tag rates obtained from data

QCD uncertainty dominated by jet energy scale uncertainty