Z-primes at the Tevatron & LHC

Tim M.P. Tait

Fermi National Accelerator Laboratory

With: Marcela Carena With: Alejandro Daleo Bogdan Dobrescu

Fermilab TeV4LHC 9/17/04

Outline

- Introduction: Why Z's ?
- What We Know Today
 - Theoretical Framework
 - LEP II bounds
- What We Hope To Find Tomorrow
 - Model Independent Studies
 - Bridges between Modelers & Experiment
- Outlook

Introduction: Why Z'?

- The SM is based on local gauge invariance under: $SU(3)_C \times SU(2)_W \times U(1)_Y$.
- It is natural to ask: are these all of the fundamental interactions of nature? What are the limits on more?
 - How well has LEP already explored them?
 - How do hadron machines increase our knowledge?
- Good theoretical reasons point to extra gauge bosons.
 - **GUT**s with "large" gauge groups (SO(10), E_6 , ...)
 - **Extra dimensions** with gauge fields in the bulk have copies of γ , Z, which are massive, neutral vector particles.
 - Theories like Topcolor use them to drive EWSB.
 - The little Higgs theories use massive vector particles to cancel quadratic divergences in the Higgs mass induced by W and Z.
 - New **SUSY** theories use them to survive the LEP II bound on m_h .

Theory Framework

- We extend the SM: $SU(3)_C \times SU(2)_W \times U(1)_Y \times U(1)_Z$.
 - There are Z's coming from larger groups like SU(2). We can usually describe their properties with a U(1), though we don't capture all of the physics.
- Each SM fermion ψ (and the usual Higgs) is assigned a charge z_ψ under U(1)_z. The Z-ψ-ψ coupling is: g_z z_ψ.
- A new scalar Φ is charged under U(1)_Z, (z_Φ = 1). Its VEV u determines the Z' mass: M_{Z'} = g_Z z_w u.
 - $-\Phi$ is neutral under the SM.
- Theory can further relate the $\mathbf{z}_{\mathbf{w}}$ to each other:
 - $SU(2)_W$ invariance: $z_{uL} = z_{dL}$.
 - Yukawa interactions: $z_{uL} + z_{uR} + z_{H} = 0$.
 - Anomaly cancellation.
 - FCNCs and family universality: $z_{dL} = z_{sL} = z_{bL}$.

Yukawas from higher dimensional operators?

New Fermions?

Specific "Model-lines"

	B- <i>x</i> L	Q+ <i>x</i> u	10+ x 5	d- <i>x</i> u
$q_L = (u_L, d_L)$	+1/3	+1/3	+1/3	0
u _R	+1/3	+ x /3	-1/3	- <u>x</u> /3
d _R	+1/3	(2- <u>x</u>)/3	- <u>x</u> /3	+1/3
$I_L = (e_L, v_L)$	- <i>X</i>	-1	+ x /3	(x-1)/3
e _R	- <i>X</i>	-(2+ <i>x</i>)/3	-1/3	+x/3

- Subject to theoretical motivations, we find a set of 4 "model lines".
- Each has a free parameter, **x**, specifying all of the couplings of the Z'.
- The $E_6 Z$'s are certain values of x for certain model lines.

e⁺e⁻ Limits: Z-Z' Mixing

- e⁺e⁻ colliders constrain Z's in two important ways.
- Precision measurements of Z physics
 - SM predictions in agreement at roughly few per mil level.
 - A Z' which mixed with Z would distort these predictions.

- If there is a single (SM) Higgs, this requires z_H very small. $\sqrt{f_L}$
- For **multiple Higgses**, one can cancel the mixing, by fine-tuning the Higgs potential against the z_H s (to the sub-% level).
- This is how the famous E_6 models survive LEP-II limits.
- I will fix $z_H = 0$.

J Hewett, T Rizzo, Phys.Rept.183, 193 (1989)

Contact Interactions

- Searching for evidence of physics beyond the SM in e⁺e⁻ψψ contact interactions.
 - At E<< m_z, the Z' effects look like four fermion interactions:
 - These depend quite sensitively on how Z' couples to e, and also to other fermions.
- LEP-II has searched for evidence of contact interactions in almost all conceivable channels.
- Bounds vary from channel to channel, complicating the analysis.

Hadron Colliders

- Hadron colliders look for Z's most effectively in the decay into charged leptons (e[±], μ[±], τ[±]).
- Unlike LEP, hadron colliders are sensitive to Z's which do not couple to e[±]: unexplored territory!
- The signal appears as a resonance above the (smooth) lepton pair backgrounds. Interference effects are tiny.

Common Ground

- Run I and existing Run II analyses have presented limits on $\sigma \times BR$. Specific E_6 models are usually overlaid to illustrate the results.
 - This is good because σ x BR is fairly model-independent: results can in principle be applied to other theories with Z's.
 - However, it is inconvenient because computing a hadronic cross section is not a completely trivial task : one has to know about QCD, PDFs, etc..
 - These are important for σ , but don't have anything to do with Z's.
- An alternate approach tries to factor out the universal QCD dependence, and bound only the Z' quantities themselves.
 - This works perfectly at LO and NLO in QCD; at NNLO there is some (very) small model-dependence.
 - Dominant NLO EW corrections are model-independent (and probably important at the few % level).

$$\sigma\left(p\overline{p} \to Z'X \to \ell^+ \ell^- X\right) = \frac{\pi}{48s} \left[c_u w_u + c_d w_d\right]$$

 $\boldsymbol{c}_{u} = g_{Z}^{2} \left(z_{q}^{2} + z_{u}^{2} \right) \operatorname{BR}(Z' \to \ell^{+} \ell^{-}) \quad \boldsymbol{c}_{d} = g_{Z}^{2} \left(z_{q}^{2} + z_{d}^{2} \right) \operatorname{BR}(Z' \to \ell^{+} \ell^{-})$

Fermilab, 9/10/04

Bounds & Projections

TeV4LHC?

- LHC will eventually reach into the TeV range for Z' masses.
- Equivalently, for lower masses the larger luminosity should eventually allow one to probe smaller couplings.
- Of course, our theoretical results for a "common ground" between experiments and model-builders are also of value at the LHC.
- Once the Z' is discovered, we will need more observables to pin down its properties.
- Tevatron inputs for high x PDFs will be important for Z' and all high mass search processes.
- Especially high x gluon PDFs are constrained by jet data, and are particularly important at LHC (LHC k-factors can be ~100%).
- Techniques such as τ ID are being developed and can be refined using real data at Tevatron.

Outlook

- Models with massive neutral bosons, Z's, are of great interest for a variety of reasons. Many different kinds of models of physics beyond the SM contain Z's.
- e+e- colliders put strong bounds, and favor a Z' which does not mix with the Z. This implies either z_H=0 or some kind of tuning.
- We have introduced several new "model lines" which contain popular E₆ inspired models, but also generalizations of them.
- A new proposal is that we directly bound quantities which contain Z' physics, but none of the QCD inputs, bringing experiment and modelers together easily (for both sides!).

 $\boldsymbol{c}_{u} = g_{Z}^{2} \left(z_{q}^{2} + z_{u}^{2} \right) \operatorname{BR}(Z' \to \ell^{+} \ell^{-}) \quad \boldsymbol{c}_{d} = g_{Z}^{2} \left(z_{q}^{2} + z_{d}^{2} \right) \operatorname{BR}(Z' \to \ell^{+} \ell^{-})$

- Tevatron can provide important inputs to LHC, including high x PDFs and new experimental technique.
- Let's find nature's next force!