Signature for New Physics from Jets and Missing Energy

Song Ming Wang

University of Florida

On behalf of the CDF and DØ Collaborations

Fermilab 16-18 September 2004

- Introduction
- •Recent results from Tevatron
- •Experience from Tevatron

Signatures of New Physics

•New physics can manifest itself in several rare final state signatures of p-p and p-pbar collisions

Signatures of New Physics

- •One of the final state signatures that one may find new physics in is
 - •Missing Energy + Jets
 - •Missing energy due to:
 - Neutrinos
 - Massive charged particles : behave like min. ionizing particle in the calorimeter
 - •Exotic neutral massive particles
 - •Jets from generic QCD or Heavy Flavor
- •New Physics:
 - •SUSY
 - •Leptoquarks
 - •Extra Dimension
 - •

SUperSYmmetry

•Postulates symmetry between bosons and fermions

•Every SM particle has a SUSY partner (spin differ by ½)

$$e,v,u,d,...$$
 (spin ½) $\Rightarrow \tilde{e},\tilde{v},\tilde{u},\tilde{d},...$ (spin 0)

$$\gamma, W^{\pm}, Z^{0}, g, \dots \text{(spin 1)} \implies \widetilde{\chi}_{1,2,3,4}^{0}, \widetilde{\chi}_{1,2}^{\pm}, \widetilde{g}... \text{(spin \frac{1}{2})}$$

•Breaks down the rigid classification:

 $matter \leftrightarrow fermions$

forces \leftrightarrow bosons

"shadow" particles

• New quantum number : R-parity = $(-1)^{3B+L+2S}$

- Particles: R=1, SParticles: R=-1
- Can unify gauge couplings
- Can incorporate gravity (SUperGRAvity)
- May have a candidate for dark matter
- •SUSY is not an exact symmetry
 - The SM particles and its SUSY partners have same quantum #, except that their masses are different

Phenomenology of SUSY (R-parity)

R-parity is conserved:

- •SUSY particles are pair produced
- •Lightest SUSY Particle (LSP) stable
 - If neutral ⇒ dark matter candidate
 - Escape detection ⇒ missing transverse energy (∠t, MET)

R-parity not conserved:

- •SUSY particle can be singly produced
 - ⇒ Larger production rate
- •LSP decays to SM particles, no dark matter candidate
- Final states:
 - Not always have large missing energy
 - More jets/leptons

Searches for Squarks and Gluinos in MET + Jets

•Light colored sparticles (\widetilde{q} , \widetilde{g}) can be copiously pair produced at Tevatron

•Decays of \widetilde{q} , \widetilde{g} may produce multiple jets and large Et (R-parity conserved)

 $\tilde{\chi}_1^0$:LSP

•DØ has performed direct search for \widetilde{q} , \widetilde{g} :

- •Using Jets+Et data sample (~85 pb-1)
- •Require ≥ 2 jets (Et₁>60 GeV, Et₂>50 GeV)
- Jets to be acoplanar, not pointing in same direction as Et (reduce QCD multi-jets)

•No isolated leptons
$$(e,\mu)$$

•
$$\not E$$
t > 175 GeV

$$\bullet H_T = \sum_i Et^i_{jet} > 275 \text{ GeV}$$

Reduce W/Z+jets

Searches for Squarks and Gluinos in MET + Jets

- A large Et event (w/ 2 large Et jets)
 - $\not E$ t = 381 GeV
 - • $Et_1 = 289 \text{ GeV}, Et_2 = 117 \text{ GeV}$

- •Observed 4 events, expect 2.7±1.0 (stat)
- •SM background mostly from :
 - • $Z(\rightarrow vv)$ +jets
 - •W($\rightarrow \tau \nu$)+jets

Searches for Squarks and Gluinos in MET + Jets

•Interpret results in mSUGRA scenario:

•
$$m_0=25$$
 GeV, $\tan\beta=3$, $A_0=0$, $\mu<0$

•Signal efficiency : ~2 - 7 % $(m_{1/2} = 100-140 \text{ GeV})$

•Set gluino (squark) mass limit at 333 (292) GeV

Have extended Run1 limit!

Leptoquarks

- •In SM, symmetry between leptons and quarks
 - Representation of fermion fields under SM gauge groups
 - Replication over 3 family generation
- •Could indicate new symmetry between lepton and quarks => new particles
- Leptoquark
 - Appears in several extension of SM: GUTS, Technicolor, Compositeness, SUSY (RPV)
 - Scalar or vector, color triplet bosons
 - Carry L and B, fractional EM charge
 - Assume LQ couples to lepton and quark of same generation to avoid FCNC constraint => 3 generation LQ

•LQ decays:

•
$$LQ \rightarrow lq$$
 $(l = e, \mu, \tau)$ $\beta = 1$ B:branching ratio to charged lepton

- •LQ production at Tevatron:
 - Predominantly pair produced through gluon splitting
 - $\sigma(M=200 \text{ GeV}) \sim 0.3 \text{ pb}$

Search for Scalar Leptoquarks

- •CDF and DØ searched for $LQLQ \rightarrow vvqq$ ($\beta=0$)
 - •⇒ 2 jets and large MET

SM processes that have the same signature 2jets+MET in the final states

QCD multi-jets: $p\overline{p} \rightarrow q\overline{q}$

- •2 jets are back-to-back
- jets balance each other in transverse energy
 - ⇒ small MET

Fake MET due to mismeasured jet energy.
MET in the same direction as the jet

Event selection:

- •2 or 3 jets
- •Large MET (> ~60 GeV)
- MET is not in the same direction as any of the jets
- Jets are not back-to-back

Search for Scalar Leptoquarks

SM processes that have the same signature 2jets+MET in the final states

•Reject these contributions by requiring that there is no isolated charged lepton (e,μ) , or no isolated track in the event

- Has exactly the same signature as the LQ signal
- •Can only reduce its contribution based on kinematic cuts (jet Et, MET, ...)

After apply all selection cuts:

•CDF: Nobs=124, Nexpect=118±14 (L=191 pb-1)

•DØ: Nobs=44, Nexpect=41.5±7.3 (L=85 pb⁻¹)

Dominant background from Z(vv)+jets

Search for Scalar Leptoquarks

Results can be applied to all 3 generations since no flavor identification

Exclusion:

Searches for Extra Dimensions

- The large gap between EW and Planck scales is assumed to be due to the geometry of the extra dimensions
- The actual gap between EW and the effective fundamental scale is ~ 1 TeV
 - •Thus solve the hierarchy problem

- •SM particles confined to the brane (our 3 spatial dimension world)
- Gravity propagates in the whole D-dim space
- •Gravity is weak on brane since it acts in a more extended space than the brane

Large Extra Dimensions (ADD) Model

("ADD" => N. Arkani-Hamed, S. Dimopoulos, and G.Dvali)

- $M_{Pl}^2 \sim R_c^n M_D^{2+n}$
 - M_{Pl} : Planck scale
 - R_c : radius of ED
 - M_D : new effective fundamental scale
 - n: # extra dimensions

- •Large extra dimension : $R\sim 1$ mm for n=2, $M_D\sim 1$ TeV
- Kaluza-Klein states of Graviton is dense and evenly spaced
 - Mass spectrum appear continuous
 - •Interfere with SM scattering amplitude

Randall-Sundrum (RS) Model

- Two branes
 - •SM confined in one brane, Gravity localized in the other brane
- Kaluza-Klein states of Graviton are widely and unevenly spaced
 - Can resolve resonances

Searches for Extra Dimensions at Tevatron in Direct G Emission

•Direct G emission:

$$\left\{ egin{array}{ll} q \ \overline{q}
ightarrow \gamma G \end{array}
ight\} egin{array}{ll} ext{Photon} \ + ext{MET} \ \hline q \ q
ightarrow G g \ q g
ightarrow G q \ g g
ightarrow G g \end{array}
ight\} egin{array}{ll} ext{jet+} \ ext{MET} \ g g
ightarrow G g \end{array}
ight\}$$

- •DØ performed search for ED in the MET+jets final state
 - •Data sample: 85 pb⁻¹

Event Selection:

- •Large MET (MET > 150 GeV)
- •A energetic central jet (Et>150 GeV)
- •Veto events with isolated leptons (e,μ)

- •2nd leading jet Et<50 GeV
- •MET should not point in direction of jets (min. $\Delta \phi$ (jet,MET) > 30 deg)

Searches for Extra Dimensions at Tevatron in Direct G Emission

- Analysis sensitive to the understanding of calorimetry
 - Largest uncertainty is in the jet energy scale (signal ~20%, bg ~ +50%, -30%)
- Nobs=63
- Nexpect=100.2±6.2(stat)±7.5(syst from cross section)
- Obtain lower limit on the effective fundamental scale M_D

Other Searches in MET+Jets

•For results on searches for sbottom in gluino decays in MET+Jets signature (CDF): please refer to Daniella Bortoletto's talk on Friday

Experience from Tevatron

- •To perform searches for new physics in MET+jets:
 - Excellent understanding of the EW processes (W/Z+jets)
 - •Good source of large MET and jets, main SM background to new physics searches in MET+jets
 - •One needs to have good measurement of quantities related to jets and MET
 - •Largest uncertainty in current Run2 searches in MET+jets is the uncertainty on the signal and background estimate due to jet energy scale uncertainty (~10% 50%)

Factors affecting Jets and MET measurement:

- •Calorimeter performance
 - •Large geometric coverage
 - Uniform response
 - Monitor channels' gain variation!
 - •Low "noise"
 - Hot channels can fake jets and high MET
 - •Low noise allow lower energy threshold on the calorimeter channels for jet and MET measurement
 - •Few "dead" region (e.g. gap between detectors)
 - Jet energy mis-measured, events may appear as high MET if jet enters this region
 - May veto event if jet enters this region
 - Need to fix "holes" (due to broken channels) quickly

Need Good Data Quality Monitoring !!!

+ Right Simulation of Calorimeter Response !!!

Jet Calibration (Jet Energy Scale):

- Correction from calorimeter-jet to parton-jet
 - Non-uniformity in calorimeter response (cracks, gains,...)
 - Underlying events
 - Multiple interactions
 - Energy outside jet cone
- Apply jet correction to correct jet energy and also MET

Proper Operation of Other Sub-detectors

- •Muon systems
 - Muon deposits little energy in calorimeter
 ⇒ need to correct MET due to muon
 - Need to reconstruct and Id muons
- Tracking systems
 - Determine primary interaction position, for proper jet Et and MET measurement
 - Determine # of multiple interactions

Other Factors affecting Jet and MET Measurements:

- •Beam halo
- Beam losses
- •Cosmic

S.M.Wang U. Florida

Can fake as jets and events with large MET

Experience from CDF at Beginning of Run 2:

•First look at MET data

- "Sine" modulation is found due to beam offset in X-Y
 - Before Sept 2003: (Vx,Vy) ~ (-1mm, +4mm) at Vz=0
 - Reconstruct MET using (Vx,Vy)=(0,0)
 - Almost no modulation for hard interaction events (e.g. high Et jet in central region)
 - Now the collision point is closer to $(Vx,Vy)=(0,0) \Rightarrow$ smaller modulation

Peaks at MET $\phi = 90$ and 270 deg

- Due to beam losses
- •~4 cm gap in the Intermediate Muon System (act as a shielding wall)
- More shieldings had been added to reduce this effect

Peaks at MET $\phi = 180 \text{ deg}$

- Due to halo muons produced by beam halo hitting the CDF roman pots
 - •Observed relative height of peak increases when roman pots move closer to beam
 - •halo muon traverses horizontally through the calorimeter, depositing energy in either EM or HAD only
 - •Overlapping of halo muons in bunch crossings with hard interactions is low (≤10-6) (CDF note 5926)

Develop Offline Algorithms to Clean Up Non-Collision Background Events

- •≥ 1 central jet
- •Require reconstructed primary vertex
- •Apply event quantity cuts:
 - $\frac{\text{Total Cal EM energy}}{\text{Total Cal energy}} > 0.1$
 - $\frac{\sum_{i} Pt_{i}(track)}{\text{Total Cal energy}} > 0.1$

Monitoring Beam Background

- High beam background could also create other problems to the experiment:
 - •Damaging power supplies
 - •High current in the chambers
- •CDF installs several scintillator counters to monitor beam background, and provide real-time feed back to the accelerator division

Summary:

- •Since the starting of Run2 CDF and DØ have worked to understand their high MET data, and have now control over the conditions for good jets and MET measurements
- •Using ~200 pb⁻¹ of Run2 data both experiments have not yet observed hints of new physics
 - However we will have ~20X more data to come STAY TUNED!
- •LHC should have a good chance of discovering new physics in the MET+Jets channel
 - The experiments should prepare the tools to allow them have a quick understanding of their detectors, and quality of data
 - Understand Standard Model backgrounds
 - Pay attention to beam related backgrounds, and have a quick channel of communication with the accelerator people