TeV4LHC Workshop, Fermilab, 16 - 18 September, 2004

HIGGS BOSON PLUS 2 JET PRODUCTION:

WBF SIGNAL AND QCD BACKGROUND AT NLO

Edmond L. Berger Argonne National Laboratory

- 1. Introduction & Motivation
- 2. Production Dynamics and WBF Cuts at the LHC
- 3. Signal Purity and Coupling Uncertainties at the LHC
- 4. Summary

E Berger and John Campbell, hep-ph/0403194, Phys Rev D, in press

Introduction and Motivation

- Assume a SM-like Higgs boson has been discovered, $115 < m_H < 200 \ {\rm GeV} \ {\rm at} \ {\rm the} \ {\rm Tevatron} \ {\rm or} \ {\rm the} \ {\rm LHC}, \ {\rm and}$ that a sample exists of H+2 jet events at the LHC
- ullet Want to use these data to determine the Higgs boson couplings ${\it g}$ to weak vector bosons, W and Z
- ullet Focus on two production subprocesses that contribute to H+2 jet events:

-
$$W+W \to H$$
 and $Z+Z \to H$ "WBF"
- $g+g \to H$ "irreducible QCD background"

- Issues for the determination of couplings:
 - How well can we model the WBF signal and the QCD backgound?
 - How well can we resolve WBF production of H from QCD production of H?
- Independent calculation of H+2 jet processes
 - to gauge the effectiveness of cuts used to select the WBF signal, and
 - to evaluate the accuracy with which coupling g can be determined in experiments at the CERN LHC

H+2 Jet Production – Signal

• Higgs boson H production via WW scattering in NLO QCD. Ex:

- ullet QCD NLO calculation of H+2 jets with CTEQ6M parton densities; renormalization/factorization scale $\mu=m_H$
- Hard perturbative scale μ dependence $\sim 2\%$ for $\frac{1}{2}m_H < \mu < 2m_H$, and CTEQ PDF uncertainty $\sim 3\%$, both in the WBF region of phase space \rightarrow signal is calculated fairly reliably
- Events generated with the MCFM code
 J. Campbell & R. K. Ellis PRD65,113007 (2002)
- Independent results (dipole subtraction method) verify the NLO calculation of Figy, Oleari, Zeppenfeld, PRD68, 073005 (2003). K-factor $\sim 10\%$, with small variation over the phase space appropriate for the WBF signal

H+2 Jet Production – Irreducible Background

Higgs boson H production via gg scattering. Ex:

- ullet Fully differential NLO calculation of H+2 jet production does not exist; contribution computed at LO Kauffman Desai and Risal, PRD55, 4005 (1997); PRD58, 119901 (1998)
- ullet Effective ggH coupling included in the limit of $m_H\ll 2m_t$ and $p_T^H< m_t$ (c.f. Del Duca et al NP B616, 367 (2001))
- NLO enhancement (K) factor is needed in the region of the WBF cuts. It can be estimated from
 - inclusive NLO $gg \to H$ $K \sim 1.7-1.8$ Harlander & Kilgore PRD64, 013015 (2001); Anastasiou & Melnikov, NP B646, 220 (2002)
 - NLO gg o H + 1 jet $K \sim 1.3 1.5$ Ravindran, Smith, van Neerven NP B665, 325 (2003)
- Uncertainty: hard scale μ dependence

Event Characteristics

- ullet Hallmark of WBF events in hadron reactions is a Higgs boson accompanied by two "tagging" jets having large $p_T \sim \mathcal{O}(\frac{1}{2}M_W)$
- ullet QCD gg o H+2 jets generate a softer p_T spectrum
- The rapidity spectra for the WBF and QCD production mechanisms also differ, related to the fact that the gluon parton density (that plays a dominant role in the background) is softer than the quark density; figures shown on next slide
- The p_T spectrum of the Higgs boson is also relatively hard. All-orders resummed calculation Berger and Qiu PRD 67, 034026 (2003) provides $< p_T^H > \sim 35$ GeV at $m_H = M_Z$, growing to $< p_T^H > \sim 54$ GeV at $m_H = 200$ GeV
- ullet Require reliable QCD representation of Hjj for jets at large p_T . Hard matrix elements are needed. A showering approach for generating the momentum distributions of the jets would not suffice; showering yields softer jets and overestimates signal purity

H+2 Jet Production – Jet Rapidity Distribution

ullet Higgs boson ${\it H}$ production via WW and ZZ scattering in NLO and via gg QCD processes (LO)

(for 1 fb^{-1} , no BR included):

- Shape of the signal distribution depends very little on the Higgs boson mass or on the p_T cut for the tagging jets. Peak at $|\eta|\sim 3$. Full width at half-max ~ 2.8
- ullet Background falls off sharply beyond $|\eta|\sim 2$
- Motivates a simple WBF prescription:

$$\eta_{
m peak}-\eta_{
m width}/2<|\eta_j|<\eta_{
m peak}+\eta_{
m width}/2$$
 $j=j_1$ or $j=j_2$, $\eta_{
m peak}$ =3, and $\eta_{
m width}$ =2.8

• This is our working definition of the WBF region

H+2 Jet Production – μ dependence

• Higgs boson H production via WW scattering in NLO and via gg QCD processes (LO) hard-scale μ variation from $\mu=m_H/2$ to $\mu=2m_H$:

- Magnitude and shape of the signal distribution depend very little on μ : $\pm 2\%$
- Magnitude of the background shows significant uncertainty at LO; it is 70% greater at $\mu=m_H/2$, and 40% less at $\mu=2m_H$
- ullet This uncertainty in the irreducible background translates into uncertainty in the extraction of the coupling strenghts. To reduce the uncertainty, a differential NLO calculation is needed for the QCD background process H+2 jets

Steps toward H+2 jets NLO QCD Background

ullet The tree-level matrix elements for H+3 jets are computed

Del Duca, Frizzo, Maltoni hep-ph/0404013; JHEP 0405, 064 (2004)

- Loop processes remain; appropriate NLO subtractions; soft and collinear singularities
- ullet Extend the NLO study of gg o H+1 jet Ravindran, Smith, van Neerven NP B665, 325 (2003) to one additional jet in fully differential fashion
- ullet Equivalent calculation for W+2 jets and Z+2 jets done and implemented in MCFM J. Campbell and R. K. Ellis
- Full NLO calculation of H+2 jets would be similar; the LO process involves 3 independent matrix elements: $g+g \to H+g+g; g+g \to H+q+\bar{q};$ and $q+\bar{q} \to H+q+\bar{q}$
- Anyone already doing this?

Signal Purity

- Define Purity $P=\frac{S}{S+B}$ S is the number of signal H+2 jet events and B is the number of H+2 jet QCD background events both in the WBF region of phase space
- ullet Study Purity P of the signal vs p_T of the jets
- Evaluate uncertainty $\frac{\delta g}{g}$ of the coupling in terms of P $\frac{\delta N}{N}$ $\frac{\delta S}{S}$ and $\frac{\delta B}{B}$

H+2 Jet Production – Event Rates for 1 fb $^{-1}$

• Event rates for the Hjj WBF signal(NLO) and Hjj background(LO), including our WBF requirement that at least one jet have $1.6 < |\eta| < 4.4$ (no BR included)

p_T cut [GeV]	20	40	80
Signal ($m_H=115$)	1374	789	166
Bkg	1196	382	92
Purity	0.53	0.67	0.64
Signal ($m_H=200$)	928	545	121
Bkg	534	179	46
Purity	0.63	0.75	0.72

• Recall
$$P = S/(S+B)$$

- Purity is independent of total integrated luminosity
- p_T cut of 40 GeV yields a good S/B across the range $m_H=115$ –200 GeV. p_T cut of 20 GeV is marginal
- Signal purities of $\sim 65\%$ for p_T cut $\gtrsim\!40$ GeV; purity is greater at the larger values of m_H

Coupling Uncertainty vs Signal Purity

- ullet If $\delta N/N \sim 10\%$ $\delta g/g \sim 10\%$ for P=0.7
- If $\delta N/N \sim 2\%$ $\delta g/g \sim 7\%$ for P=0.7
- Uncertainties in S and in B dominate uncertainty in g. With P=0.7 and $\delta N/N=2\%$, then $\delta S/S$ and $\delta B/B$ have to be reduced to 3% and 6% before statistics control the answer
- ullet P>0.65 permits $\delta g/g\sim 10\%$ after $200~{
 m fb}^{-1}$ Obtained for $p_T^{
 m cut}>40~{
 m GeV}$ at $m_H=115~{
 m GeV}$ and for $p_T^{
 m cut}>20~{
 m GeV}$ at $m_H=200~{
 m GeV}$
- Suppose $K_{
 m background}^{
 m NLO}\sim 1.6$ P=0.56 for $p_T^{
 m cut}>40$ GeV at $m_H=115$ GeV ightarrow $\delta g/g=13\%$ P=0.52 for $p_T^{
 m cut}>20$ GeV at $m_H=200$ GeV ightarrow $\delta g/g=15\%$

Summary

- Studied H+2 jet production at the energy of the LHC. Fully differential hard matrix elements used to generate p_T spectra
- ullet Evaluated the signal purity P (fraction of real H events produced by WBF) in each case as a function of the transverse momentum cut used to define the tagging jets
- A fully differential NLO calculation of the H+2 jet QCD background distributions is needed, applicable in the WBF region of phase space, so that P and $\delta g/g$ can be determined more accurately
- After $200~{\rm fb}^{-1}$ are accumulated at the LHC, it may be possible to achieve an accuracy $\delta g/g \sim 10\%$ in the effective coupling (combination of HWW and HZZ) of the Higgs boson to weak bosons. (These estimates are less optimistic than those in the Les Houches 2003 study)
- With a 500 GeV LC and $500 {\rm fb}^{-1}$, the expected accuracies are $\delta g_{ZZH}/g_{ZZH}\simeq 3\%$ for $120 < m_H < 200$ GeV and $\delta g_{WWH}/g_{WWH}\simeq 3\%$ to $\simeq 7\%$ for $120 < m_H < 160$ GeV