Higgs boson searches in multi-b-jet final states

Avto Kharchilava University of Notre Dame

For the DØ Collaboration

Outline

- Introduction
 - Challenges
 - Monte Carlo tools
- bh vs bbh
- Multi-jet trigger
- Analysis technique
 - b-tagging
 - Di-jet mass resolution
 - Multi-b-jet rates
- Preliminary results
- Prospects
 - Multi-jet rates at LHC ?
- Summary

Event with 3-b-tagged jets

TeV4LHC

Introduction (1)

- Searches for Higgs boson(s) in bh/bbh(→bb) associated production is a challenge for both, theorists and experimentalists
- In theory
 - Only recently higher order calculations for bh/bbh production became available
 - Significant progress but still large uncertainties
 - (SUSY/MSSM) aspects of h/H/A phenomenology are complicated, and often no adequate tools are available for proper interpretation of experimental results
 - E.g. b-h/-H/-A couplings are not simple functions of tan β , α , other SUSY parameters
- In experiment
 - It is a challenge to have efficient jet trigger (based on calorimetry) at level 1
 - Have more handles at higher trigger levels, but efficiency is still an issue
 - No MC tools to reliably estimate multi-(b)-jet bkgd. so analysis is (almost) entirely data driven
 - Little problem for the Tevatron, but hard to judge expectations at LHC
 - No signal MC event generator at NLO available
 - Resort on re-weighting of general purpose event generators

Introduction (2)

- Four leading jets E_{T} spectra in signal MC and preselected data
 - QCD multi-jet rate is large
 - Have to harden jet cuts to manage rate
 - Jets from (low mass) signal appear to be soft

Monte Carlo tools

- Signal events generated with Pythia: T. Sjostrand et al., Comp. Phys. Comm. 135 (2001) 238
 - Cross-check with CompHEP: A. Pukhov et al., hep-ph/9908288
 - Cross sections normalized to NLO MCFM: J. Campbell, K. Ellis, hep-ph/0204093
 - Events are re-weighted to account for kinematics shape (Higgs p_T) difference
 - Details in the following slide
- Minimal use of MC in background shape evaluations
 - ALPGEN: M.L. Mangano et al., JHEP 0307: 001, 2003
 - MADEVENT: F. Maltoni, T. Stelzer, JHEP 0302: 027, 2003
- Masses, widths, decay branching fractions to bb
 - HDECAY v. 3.101: M. Spira, hep-ph/9704448
 - Two different models for cross-checks
 - M. Carena, M. Quiros, C.E.M. Wagner, Nucl. Phys. B461 (1996) 407
 - S. Heinemeyer, W. Hollik, G. Weiglein, hep-ph/0002213 (FeynHiggsFast package)
 - Yield somewhat different results, but the current experimental sensitivity to the region of MSSM parameter space doesn't allow to distinguish between the two

Basic assumptions: Higgs boson production at large tan β

- Large $tan\beta \rightarrow enhanced bb\phi (\phi = h, H, A)$ coupling
 - Cross section rises like tan²β
- A and (h or H) are produced simultaneously
- A, h (or H) to bb decay branching fractions are ~ 0.9
- Except for a region $m_A \sim 110 130$ GeV depending on tan β and other MSSM pars.

Basic assumptions: Higgs boson mass and width

• Results from HDECAY 3.101, $tan\beta = 30$ (all other parameters set to default)

TeV4LHC

bh vs bbh processes

 Depending on kinematics, the 2nd spectator b might well be central

Almost exact overlap Can use bh or bbh Use bh in the following

Signal simulation

- NLO x-sections: J. Campbell, R.K. Ellis, F. Maltoni, S. Willenbrock, Phys. Rev. D67 (2003) 095002
- Events are generated w/ Pythia, MSUB(32): bg → bH

- Total rate normalized to MCFM NLO
- In the region of interest the NLO/Pythia corrections are at ~10% level
- Pythia MC events are assigned p_T(Higgs) dependent weights

b-tagging

- Tagging algorithm based on the measurement of secondary vertices
 - Cross-check w/ algorithms that employ impact parameter measurements
- Extra loose operating point:
 - b-tagging efficiency of ~ 40-50%
 - Light-quark mis-tag rate of ~ 3-4% depending on jet E_T

- Use η -dependent tag rate functions
- b-tagging as a function of jet multiplicity was observed flat within statistics

TeV4LHC

Di-jet mass resolution

Event selection – triggering

- Typical trigger conditions: CJT(3,5), L2(3,8)L2HT(50), L3(2,25)L3(3,15)
 - L1: 3 jets of 5 GeV L2: 3 jets of 8 GeV & $H_T > 50$ GeV L3: 3 jets of 15 GeV & 2 jets of 25 GeV
- Current trigger employs impact parameter measurements at L2

- Overall trigger efficiency as measured in data agrees well with MC expectations
- Have signal efficiency of 65-80% relative to offline cuts depending on the Higgs boson mass

TeV4LHC

Event selection – offline

- Typical event selection criteria for various Higgs boson masses
 - Optimized for the best sensitivity
 - $n_i^{min} = 3$ data sample yields better results/limits

Analysis cuts on three leading jets E_T , η and its multiplicity

Signal (GeV/c^2)	$E_T 1 (\text{GeV})$	$E_T 2 (\text{GeV})$	$E_T 3 (\text{GeV})$	$ \eta _j$	n_j^{max}
$n_j^{min} = 4, m_h = 100$	40	35	15	2.5	4
$n_j^{min} = 4, \ m_h = 120$	45	35	15	2.5	5
$n_j^{min} = 4, \ m_h = 150$	60	40	15	2.0	5
$n_j^{min} = 3, m_h = 100$	45	35	15	2.5	4
$n_j^{min} = 3, m_h = 120$	45	35	15	2.5	4
$n_j^{min}=3, m_h=150$	60	40	15	2.0	4

TeV4LHC

Multi-b-jet background estimation

Double b-tag sample

- Multi-jet fakes are estimated from data
- Normalization of HF multi-jet processes (mainly bbjj + some bbbb) is left as a free parameter in the fit
 - After correction for ccjj events, the HF bkgd. is by a factor of ~1.2 higher in data then predicted by ALPGEN (!)
 - Light quark/gluon jet rate comparable to HF contribution

TeV4LHC

Triple b-tag sample

- At least 3 jets; p_T and η cuts optimized for Higgs mass and # of required jets
- Look for excess in di-jet mass
- Background shape determined from double b-tagged data by applying fake tag function to non-b-tagged jets

- HF production is dominant
- No additional tuning for HF fraction is required once its rate is fixed in double b-tag sample

TeV4LHC

b∲/bb∲(→bb): preliminary results

TeV4LHC

• Systematic uncertainties on signal acceptance (%)

Signal (GeV/c^2)	NLO/LO	Trig	Resolution	JES	Jet ID	B-tag	Total
$n_j^{min}=4, m_h=100$	5	9	8.0	20	3.8	13.5	27.7
$n_j^{min} = 4, \ m_h = 120$	5	9	12.0	16	3.4	13.5	26.5
$n_j^{min} = 4, \ m_h = 150$	5	9	11.9	13	3.5	13.8	24.9
$n_j^{min}=3, m_h=100$	5	9	7.5	12	3.7	13.5	22.4
$n_j^{min}=3, m_h=120$	5	9	12.5	7.5	3.5	13.2	22.5
$n_j^{min}=3, m_h=150$	5	9	12.8	3.4	3.6	13.4	21.8

- Systematic uncertainties for backgrounds ~ 8-10% depending on n_j^{min}, m_h; mostly b-tagging or statistic related
- Expect improvements in next round of analysis

Signal and background: Tevatron vs LHC ?

- bh/bbh production cross section from: S. Dawson, C.B. Jackson, L. Reina, D. Wackeroth, hep-ph/0408077
- Take bbjj rates as given by ALPGEN
 - Selections
 - $p_T^b > 30 \text{ GeV}, |\eta| < 2.5, \Delta R_{min}(j-j, j-b) > 0.4$
 - $p_T^{j} > 15 \text{ GeV}, |\eta| < 2.5, \Delta R_{min}(j-j, j-b) > 0.4$
 - The dominant bkgd. at the Tevatron
 - In reasonable agreement with data ?
 - · Need more studies to claim this

Signal, $m_H = 150$ GeV, vs bkgd. rates

Process	Tevatron	LHC	Ratio
b(b)h, σ [fb]	0.8	90	110
bbjj, σ [nb]	1.6	120	75

- S/B ratio is more advantageous at LHC ?
 - Interesting but need more solid ground

Summary

- Preliminary results have been obtained for MSSM Higgs boson searches
- Although limits set on (tanβ, m_A) plane are not general or competitive yet, the current analysis demonstrates high potential of the Tevatron/DØ for searches in multi-b-jet final states
- Many challenges have been addressed and better understanding acquired of
 - Triggering, jet tagging, MC issues
- Next round of analysis with better object IDs and more data look very promising