


Central Exclusive Higgs
with LDC uPDF's

LUND

UNIVERSITY
e Higgs a la Khoze, Martin, Ryskin
e Unintegrated gluons from LDC
e Preliminary results

Fermilab

2003.09.20

Leif Lonnblad



Exclusive Diffractive Higgs
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Exclusive Diffractive Higgs
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/4 Is the un-integrated, off-diagonal gluon density.
S? is a soft survival probability.
b is the t-slope of the proton.
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Forx’%%<<x%%<<1:

fole QM) = Ry |\T(Qu M /2)20(2. 01
t
Ry(z, 1i%) ~ 1 + (0.82 + 0.56)) A
with X\ =dln(zg(z, 1?))/dIn(1/z)
(R,) = 1.2(1.4) at LHC (Tevatron)

T"is the Sudakov form factor (hard survival probability).
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Further emissions of gluons which would destroy the gaps are
screened for p; , < Q.
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couples to the Higgs at a large scale).
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couples to the Higgs at a large scale).

The unintegrated gluon is the derivative of the integrated one.
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Further emissions of gluons which would destroy the gaps are

screened for p; , < Q.

The Sudakov corresponds to the gap survival probability due to
gluon radiation with p; , > Q. (Square root since only one gluon
couples to the Higgs at a large scale).

The unintegrated gluon is the derivative of the integrated one.

0

gKMR(xa kﬁ_a QQ) — 5? [T(kﬁg Q)ZEg(ZE, ki)}
1

Gap survival probability due to soft/semi-hard rescatterings
S? ~ 0.02(0.045) for the LHC (Tevatron)
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How well do we know the un-integrated gluon density? (£ oc G*%)
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How well do we know the un-integrated gluon density? (£ oc G*%)
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Linked Dipole Chain Model

e Based on CCFM (but better)

G(z,k%,3%) ~ G(x, k3, k7)As (k3 ,3°)

Leif Lonnblad 6



Linked Dipole Chain Model

e Based on CCFM (but better)
e Redefine initial- vs. final-state

G(z,k%,3%) ~ G(x, k3, k7)As (k3 ,3°)

Leif Lonnblad 6



Linked Dipole Chain Model

e Based on CCFM (but better)
e Redefine initial- vs. final-state
e Order emissions in ¢4 and q_

G(z,k%,3%) ~ G(x, k3, k7)As (k3 ,3°)

Leif Lonnblad 6



Linked Dipole Chain Model

e Based on CCFM (but better)
e Redefine initial- vs. final-state
e Order emissions in ¢, and q_
e Require g, > min(ky1;_1,k1;).

G(z,k%,3%) ~ G(x, k3, k7)As (k3 ,3°)

Leif Lonnblad 6



Linked Dipole Chain Model

e Based on CCFM (but better)
e Redefine initial- vs. final-state
e Order emissions in ¢, and q_
e Require ¢ > min(k ;_1,k1,).

e No non-Sudakov

G(z,k%,3%) ~ G(x, k3, k7)As (k3 ,3°)

Leif Lonnblad 6



Linked Dipole Chain Model

e Based on CCFM (but better)

lepton e Redefine initial- vs. final-state
i e Order emissions in g4 and q_
~ Gn+1

N e Require ¢, > min(ky;_1,k1;).

e No non-Sudakov
e | ess infrared sensitive

G(z,k%,3%) ~ G(x, k3, k7)As (k3 ,3°)

Leif Lonnblad 6




Linked Dipole Chain Model

e Based on CCFM (but better)

lepton e Redefine initial- vs. final-state
i e Order emissions in g4 and q_
= Gn+1

. e Require ¢, > min(ky;_1,k1;).

e No non-Sudakov
e Less infrared sensitive
e Straight forward to add quarks

G(z,k%,3%) ~ G(x, k3, k7)As (k3 ,3°)

Leif Lonnblad 6



Linked Dipole Chain Model

e Based on CCFM (but better)
e Redefine initial- vs. final-state
e Order emissions in g4 and q_
e Require ¢, > min(ky;_1,k1;).

e No non-Sudakov
e Less infrared sensitive
e Straight forward to add quarks

e and non-singular terms

G(z,k%,3%) ~ G(x, k3, k7)As (k3 ,3°)

Leif Lonnblad 6



Linked Dipole Chain Model

e Based on CCFM (but better)
e Redefine initial- vs. final-state
e Order emissions in g4 and q_
e Require ¢, > min(ky;_1,k1;).

e No non-Sudakov

e Less infrared sensitive

e Straight forward to add quarks
e and non-singular terms

e Forward—backward symmetric

G(z,k%,3%) ~ G(x, k3, k7)As (k3 ,3°)
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folw,a', Q. M?/4) = Ry=o5 | VT (Qu, M/2)g(x, Q)]

“Strictly speaking the relationship was only proven for integrated
gluons. However, it is expected to hold equally well for the
unintegrated distribution.”

fol@, 2, Q2. M?) = Ry\JAs(Q2, M2) Gz, Q3. Q?)

In LDC G(z, Q%, Q%) also contains effects of emissions with
p1g > Q¢. Should these be included? Also the screening gluon may

contain effects of p;, > Q)¢ which are larger since

I~ Qt ~ M
:UN\/%<<;C~\/§.
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LDC needs a cutoff, k|, below that we use non-perturbative input
densities.

™ M aQ?

v |t (L o 0raboe.ar.anasat o

C

2
+ 90(3:7 kio)go(% kiO)AS(kim Mz)/ki())]

Leif Lonnblad 11



We will use three different LDC unintegrated gluons which differs in
the treatment of non-leading terms.

standard uses quark and gluon evolution with full splitting functions.
Gives a good description of F5.

gluonic uses only gluons with full splitting function. Gives a good
description of the integrated gluon.

leading uses only gluons with only singular terms in the splitting
function. Gives a good description of forward jets and b-production
at the Tevatron.

They are all extracted from generating a large number of DIS events
with LDCMC and sampling the gluon density in bins of x and k.
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Preliminary results

LHC Vs=14000 GeV, y=0
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Preliminary results

LHC vs=14000 GeV, y=0
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Khoze, Martin, Ryskin, Eur. Phys. J. C23 (2002) 311.
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Tevatron vVs=1800 GeV, y=0
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LHC vs=14000 GeV, M=120 GeV
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Unintegrated gluon. x=120/14000, uZ:(120 GeV)2
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In the luminosity function the Sudakov hits you at small ()7 and the

1/Q% at large. (Q7) ~ 2 — 3 GeV.
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Unintegrated gluon. x=120/14000, p2=(120 GeV)2
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LHC Vs=14000 GeV, y=0
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LHC Vs=14000 GeV, y=0
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LHC Vs=14000 GeV, y=0
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LHC Vs=14000 GeV, y=0
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Conclusions

e Central Exclusive production of anything is interesting

Leif Lonnblad 18



Conclusions

e Central Exclusive production of anything is interesting

e There are large uncertainties due to the uPDFs

Leif Lonnblad 18



Conclusions

e Central Exclusive production of anything is interesting
e There are large uncertainties due to the uPDFs

e Sensitive to k| -dependence of the uPDFs at around k| ~ 2 — 3

Leif Lonnblad 18



Conclusions

e Central Exclusive production of anything is interesting
e There are large uncertainties due to the uPDFs
e Sensitive to k| -dependence of the uPDFs at around k| ~ 2 — 3

e The k| -dependence is poorly constrained experimentally

Leif Lonnblad 18



Conclusions

e Central Exclusive production of anything is interesting
e There are large uncertainties due to the uPDFs
e Sensitive to k| -dependence of the uPDFs at around k| ~ 2 — 3

e The k| -dependence is poorly constrained experimentally

Leif Lonnblad 18






