From Color Transparency
to Color Opacity

L. Frankfurt
Tel Aviv University

FNAL, September 2003
Definition of generalized Color Transparency

\[\sigma(T \rightarrow p) = \frac{\pi^2}{3} d^2 \ \eta_{5} \left(\frac{A}{d^2} \right) \times \eta_{7} \left(x, \frac{A}{d^2} \right) \]

d is transverse distance between 9 and 7.

\[Q^2 = \frac{A}{d^2}; \quad x = \frac{Q^2}{V} \]

This formula is equivalent to DECAP

\[\frac{\sigma(A \rightarrow X)}{\sigma(p \rightarrow X)} \Rightarrow A \] up to nuclear shadowing

\[x \text{ is fixed, } d^2 > 0 \]

This generalized Color Transparency should be valid for any phenomenon where small size wave package dominates in the wave function of projectile.
Why CT is important:

1. First time cross section of some exclusive processes is calculable in QCD.

3. Unambiguous demonstration that with increase of collision energy new quark-glueon configurations give significant contribution.
For some hard processes dominance of ssc in the projectile wf can be proved in QCD.

1. $e^+p \rightarrow V + T$

in the limit of fixed x but $Q^2 \rightarrow \infty$

2. $b + T \rightarrow \text{minimal number of jets} + T$

Proxe requires accurate account of

i). Ward identities in QCD

ii) Energy - momentum conservation

iii). Rotational invariance in transverse plane.

iv). Properties of trigger for minimal number of jets
Direct observation of generalized Color Transparency

i) $\sigma(\gamma^* + A \rightarrow X)$

ii) $\sigma(\gamma A \rightarrow \gamma + A)$

iii) $\sigma(\pi A \rightarrow 2\mu A)$

iv) $\sigma(\gamma^* + p \rightarrow N + p)$

$v = p^0, \omega, \phi, \psi, \psi', \rho, \pi,

SLAC, CERN, FNAL

FNAL (1980)

FNAL (2000)

H1, ZEUS
(ii) Absolute cross section of ρ production at $Q^2 \sim 20-30 \text{ GeV}^2$ and its energy dependence at $Q^2 \sim 20 \text{ GeV}^2$. Explanation of the data at lower Q^2 is more sensitive to the higher twist effects, and uncertainties of the low Q^2 gluon densities.

(iii) Convergence of the t slopes $B (\sigma = A \exp(Bt))$ of ρ-meson production at large Q^2 and J/ψ production (Brodsky et al 94)
Extensive data on VM production from HERA support dominance of the pQCD dynamics. Numerical calculations including finite b effects in $\psi_N(b)$ explain key elements of high Q^2 data. The most important ones are:

(i) Energy dependence of J/ψ production; absolute cross section of $J/\psi, \Upsilon$ production.
The E-791 (FNAL) data $E_{inc}^{\pi} = 500 GeV$ are recently submitted to PRL (D.Ashery 1998-2000) \(\pi + A \rightarrow 2 \text{jet} + A \)

♥ Coherent peak is well resolved:

Number of events as a function of q_t^2, where $q_t = \sum_i p_t^i$ for the cut $\sum p_z \geq 0.9 p_\pi$.

M.Strikman
Observed A-dependence $A^{1.61 \pm 0.08}$ \([C \rightarrow Pt] \)

FMS prediction $A^{1.54}$ \([C \rightarrow Pt] \) for large k_t & extra small enhancement for intermediate k_t.

For soft diffraction the Pt/C ratio is ~ 7 times smaller!!

(An early prediction Bertsch, Brodsky, Goldhaber, Gunion 81 $\sigma(A) \propto A^{1/3}$)
k_t^{-n} dependence of $d\sigma/dk_t^2 \propto 1/k_t^{7.5}$ for $k_t \geq 1.7\text{GeV}/c$ close to the QCD prediction - $n \sim 8.0$ for the kinematics of E971

- High-energy color transparency is directly observed.
- The pion $q\bar{q}$ wave function is directly measured.

Next step: Measuring three quark component of the proton wave function in the process $p + A \rightarrow 3\ \text{jets} + A$ (RHIC) & $p + \bar{p} \rightarrow 3\ \text{jets} + p$ (Tevatron collider)

Will measure matrix element relevant for proton decay in GUTs
The z dependence is consistent with dominance of the asymptotic pion wave function $\propto z(1-z)$.

Solid lines - fit: $\sigma(z) \propto \phi^2_{\pi}(z) \propto (1-z)^2 z^2$
The unitarity boundary for the inelastic $q\bar{q}$-nucleus cross sections for nuclei with $A=12$, 40, 100, and 200 for the central impact parameters. The unitarity boundary for the inelastic $q\bar{q}$-nucleon cross section is presented as a thick solid line. Guzey & FS 2000 & FGS+McDermott 2001

7th CMS Heavy Ion Workshop; June 9, 2003

M.Strikman
The unitarity boundary for the inelastic $q\bar{q}g(gg)$ (color octet)-nucleus cross sections for nuclei with $A=12, 40, 100, \text{ and } 200$. The unitarity boundary for the inelastic $q\bar{q}g$-nucleon cross section is presented as a thick solid line.
Black body limit = Unitarity bound

\[\text{Im } f_\rho = 0 \quad \rho < \rho_0(s) \]

\[\text{Im } f_\rho = 1 \quad \rho > \rho_0(s) \]

Advantage: all amplitudes are unambiguously calculable

Disadvantage: unclear whether it follows from QCD - strong QCD interaction may appear nonperturbative?
Properties of unitarity bound (BBL).

1. \(\sigma(\gamma^* + N \rightarrow X) \sim c \ln^2 \frac{\tilde{E}}{\tilde{s}_0} \left(\ln \frac{\tilde{s}}{\tilde{s}_0} \right) \)

Increase with energy is due to increase of impact parameters \(\sim \ln^2 \tilde{s} \), because of width of \(\gamma^* \sim \ln \tilde{s} \).

2. The slope of \(t \) dependence \(\frac{d\sigma}{dt} \) is constant.

3. \(\sigma(\gamma^* + p \rightarrow N + \nu) \sim \frac{1}{\tilde{t}} \)

4. \(\sigma(\gamma^* + A + X) \sim \ln \frac{s}{s_0} \)

Nuclear density is uniform, possible to select central collisions.
Unitarity of U matrix for the amplitude of dipole $+T \rightarrow$ dipole $+T$.

Approximations: $d^2 \ll \lambda^2_{a\omega}$, $d_3 \ll 1$

Large contributions are due to x, Q^2 evolution.

\[\text{Im} \, f_e (\xi, d^2) = \frac{1}{2} |16e|^2 \cdots \]

Thus $|16e| < 1$ within proper normalization.

QCD formulae cannot be applicable at arbitrary small x but at fixed impact parameters.
5. \[\frac{\sigma(L^+ + A \rightarrow 2 \text{jet} + A)}{\sigma(r^+ + A + x)} \times \frac{1}{2} \]

DGLAP

\[\frac{1}{N_c} \]

6. For the central heavy ion collisions at LHC

\[A + A \rightarrow \{ \text{fragmentation of nucleus} = X \} + x \]

i) Nonperturbative physics will be killed for system \(S \).

ii) Cases of quarks, of gluons are produced in system \(S \).

iii) Case of gluons tends to cool gas of quarks. Impluse.

FS. 2003