GTeV: Gluon Physics at the Tevatron

Mike Albrow Fermilab

GTeV: Gluon Physics at the Tevatron

- A future experiment at the Tevatron
- 2009: CDF & D0 complete data taking
 - BTeV to run (if funded) 2009- ~ 2013 (?)
- Primary Goal of GTeV: QCD (perturbative & non-perturbative)
- Uses CDF or D0 detector as "core"
- Add precision forward and very forward tracking

Primary Goal: Understand Strong Interactions

Foci:

Gluon density g(x, Q2) at very low x

saturation, unitarity, gluodynamics, non-perturbative frontier

Pure Gluon jets

profiles, content, color connection, gg compared to q-qbar jets

Determine glueball spectrum

Relates to pomeron trajectories, strings, lattice ...

Measure exclusive χ_c^0 , χ_b^0

Relates to Higgs study at LHC

Discover new exotic hadrons

Hybrids, 4-quark, pentaquarks, ...

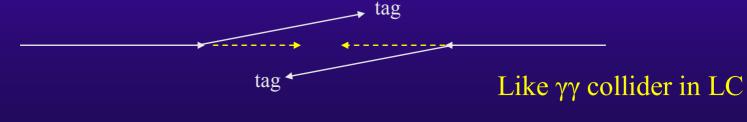
Search for exotic fundamentals

CP-odd H, Radions, gluinoballs ...

Use Tevatron as Tagged Glue-Glue Collider

$$\sqrt{s_{gg}} = \sim 1 \text{ GeV} \Longrightarrow \sim 100 \text{ GeV}$$

$$\sigma_{\sqrt{s}} \sim 100 \text{ MeV} \qquad \longleftarrow \text{ (Stretch Goal)}$$


Glueballs and Hybrids

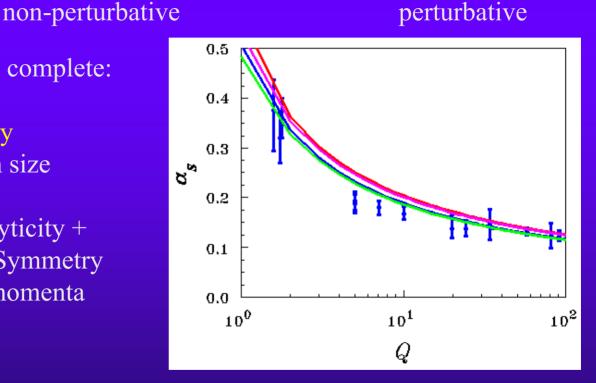
New Exotic Hadrons

chi_c and chi_b states

Hunting strange exotic animals (radions, ...?

Everywhere: Gluodynamics, perturbative and non-perturbative issues

Mike Albrow GTeV DESY March 2004


The REAL Strong Interaction

Many approaches, none complete:

- → Lattice Gauge Theory
 Small volume, hadron size
- → Regge Theory: Analyticity +
 Unitarity + Crossing Symmetry
 + Complex angular momenta
- → String models

Want a complete understanding of S.I.

$$Q^2 = 0 \rightarrow \infty$$

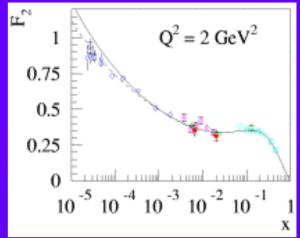
Non-perturbative – perturbative transition

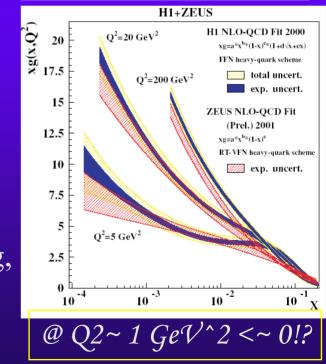
Some of proposed program could be done now, except:

- 1) Do not have 2-arm forward p-taggers (dipole spectrometer)
- 2) Small angle (< 3 deg) region now trackless
- 3) Limit on number of triggers
- 4) Bandwidth allocated small

60 Hz
$$\rightarrow$$
 250 Hz \rightarrow > 1 KHz for 2009 [10¹⁰/year]

CDF, D0: NP QCD $\sim 10\%$, other $\sim 90\%$ GTeV: QCD $\sim 90\%$, other (?) $<\sim 10\%$

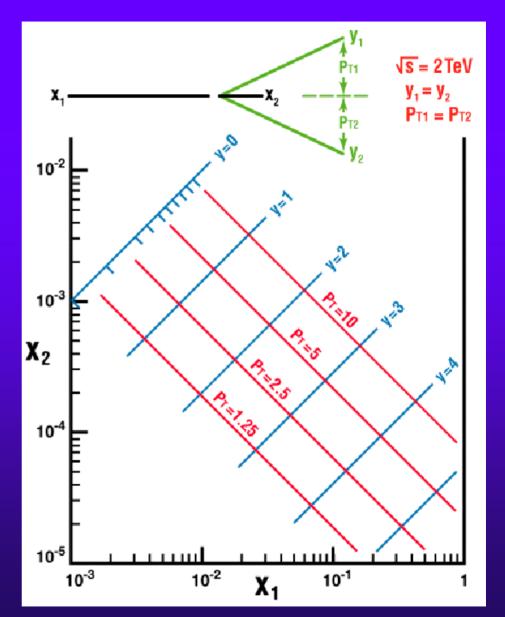

& upgrade of forward and very forward detectors


Probing Very Small x Gluons

High parton densities New phenomena (gluon saturation) HERA measures q(x) to $\sim 10^{-5}$ g(x) by evolution, charm GTeV: measure g(x) to \sim few 10^-5 (also x >~ 0.5) more directly

$$x_1 = \frac{p_T}{\sqrt{s}} (e^{y_1} + e^{y_2})$$
; $x_2 = \frac{p_T}{\sqrt{s}} (e^{-y_1} + e^{-y_2})$
e.g. $\sqrt{s} = 1960$ GeV, $p_T = 5$ GeV, $y_1 = y_2 = 4$ (2.1°)
 $\Rightarrow x_1 = 0.56, x_2 = 10^{-4}$

Instrument $0.5^{\circ} < \theta < 3^{\circ}$ region with tracking, calorimetry (em+had), muons, J/ψ jets, photons ...


Low-x

Mapping:

partons' x_1, x_2 to jets' y, p_T for $y_1 = y_2$

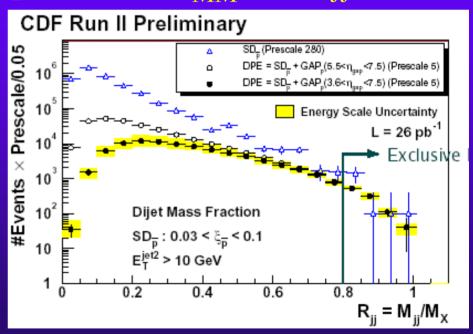
Forward DD probably best for lowest x gluons.

BTeV may do this.

Gluon Jets

LEP(Z) ... $\sim 10^7$ q-jets, detailed studies "Pure" g-jet sample: 439 events (OPAL), Delphi more but 80% "pure"

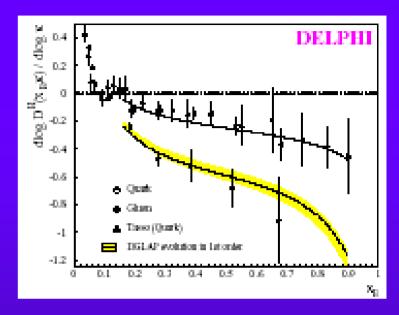
$$e^+e^- \rightarrow Z \rightarrow b \overline{b} g$$
In pp \rightarrow p JJ


(2 jets and ~ nothing else)
~ 99% pure g-jets
q-jets suppressed by Jz = 0 rule

 $\sim 10^5$ pure g-jets

Fragmentation, scaling color singlet back-to-back gg jets: DPE unique

g-jet contaminated at low-x

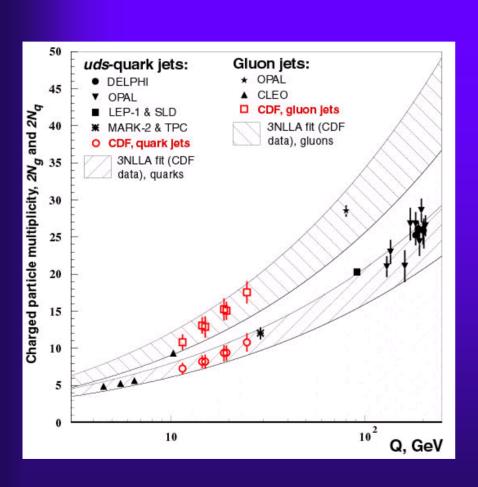

 \overline{p} with $M_{MM} \approx M_{JJ}$

Gluon Jets: Scaling violations in Fragmentation

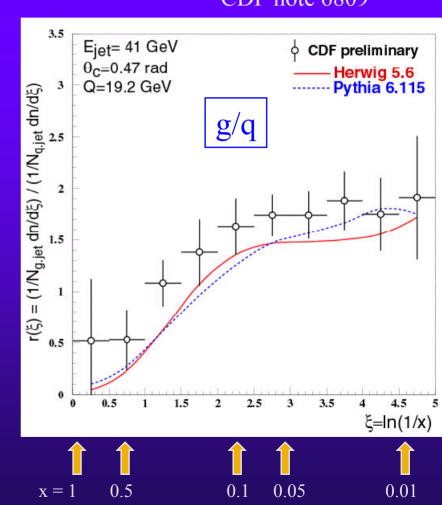
Gluon jet fragmentation and scaling violations different from quark jets.

Measure \sim pure gluon jet fragmentation from Q^2 \sim 400 GeV^2 to 10,000 GeV^2

10


For x ~ 1 ratio of log derivatives = ratio of g and q color charges:
$$\frac{C_A}{C_F} = \frac{9}{4}$$

g-jets wider $\delta_g = \delta_q^{C_F/C_A = 9/4 = 2.25}$ softer, higher n, larger n-fluctuations


QCD uniquely defines color singlet back-to-back gg jets: DPE unique

Gluon Jets: Purity and High Statistics

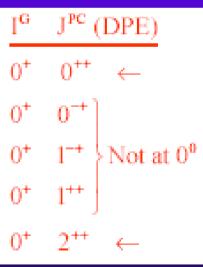
Comparing jet-jet and photon-jet (CDF)

CDF note 6809

Central Exclusive Production

... or, diffractive excitation of the vacuum

"It is contrary to reason to say that there is a vacuum or a space in which there is absolutely nothing." Descartes


→ Virtual states in the vacuum can be promoted to real states by the glancing passage of two particles.

Charged lepton (or q) pairs : 2-photon exchange Hadronic states : 2-pomeron exchange (DPE) dominates

Vacuum quantum number exchange.
Central states' quantum numbers restricted.

Measure forward p,pbar → missing mass, Q-nos.

Ideal for Glueball, Hybrid spectroscopy

Gluonia and Glueballs

Hadrons G without valence quarks

Allowed in QCD – or, if not, why not?

Some can mix with qq mesons

Some have exotic quantum numbers and cannot $J^{PC} = 0^{--}$, even⁺⁻, odd⁻⁺

Glue-glue collider ideal for production (allowed states singly,

others in association GG', G + mesons.)

Forward pp selects exclusive states, kinematics filters Q.Nos:

Forward protons: $J^P = 2^+$ exclusive state cannot be non-relativistic $q\bar{q}$ ($J_z = 0$ rule)

Exclusive central states e.g. $\phi\phi \to 4K$, $\pi\pi KK$, $D\bar{D}^*$, $\Lambda\bar{\Lambda}$, etc

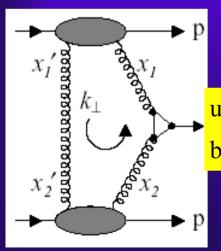
Other processes:

This one
$$\rightarrow$$

$$\pi^{-}p \to [\phi\phi] + n$$
This one \to
$$J/\psi \to \gamma + G \qquad e^{+}e^{-} \to J/\psi, \Upsilon + G$$

$$p\overline{p} (low \sqrt{s}) \to G + anything$$

$$gg \to G, GG, G+anything$$


Central Exclusive Production

gg fusion: main channel for H production.

Another g-exchange can cancel color, even leave p intact.

$$pp \rightarrow p + H + p$$

Theoretical uncertainties in cross section, involving skewed gluon distributions, gluon k_T, gluon radiation, Sudakov form factors \rightarrow Probably $\sigma(SMH) \sim 0.2$ fb at Tevatron, not detectable, but may be possible at LHC (higher L and $\sigma \sim 3$ fb?)

u-loop : $\gamma\gamma$ c-loop : χ_c^0

b-loop: χ_b^0 t-loop: H

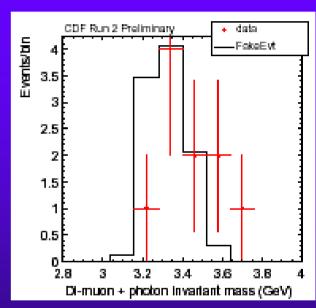
Theory can be tested, low x gluonic features of proton measured with exclusive χ_c^0 and χ_b^0 production.

Khoze,Martin,Ryskin hep-ph/0111078 Lonnblad & Sjodahl hep-ph/0311252 and many others

Mike Albrow GTeV DESY March 2004

Exclusive χ_c search in CDF: $p \overline{p} \rightarrow p \quad \chi_c \quad \overline{p}$

Predictions for Tevatron: Khoze, Martin, Ryskin ~ 600 nb Feng Yuan ~ 735 nb (20 Hz at Tevatron!)


In reality: BR($\chi_c^o \rightarrow J/\psi \gamma$) ~ 10^{-2} ; BR($J/\psi \rightarrow \mu^+\mu^-$) ~ 6.10^{-2}

No other interaction ~ 0.25 ; acceptance(trig) $\sim 10^{-2}$

$$\Rightarrow$$
 few pb (1000's in 1 fb⁻¹)

$$\sigma(p p \rightarrow p \quad \chi_b \quad p) \sim 120 \text{ pb (KMR)}$$

$$\times (BR \to \Upsilon \gamma) \times (BR \to \mu \mu \gamma) \Rightarrow \sim 500/fb^{-1}$$

15

Measuring forward $p \rightarrow$ central quantum numbers

$$J^P = 0^+$$
; 2++ suppressed at t=0 for $q\bar{q}$ state

(Khoze, Martin, Ryskin hep-ph/0011393; F. Yuan hep-ph/0103213)

If MM resolution <~ 100 MeV, exclusive test, resolve states

CP-Odd Higgs at Tevatron?

In SUSY can have CP-violation in Higgs sector Higgses are CP-odd & CP-even mixtures

CP-odd component does not couple to W,Z

- \rightarrow Even if M ~ 40 GeV would not have been seen at LEP
 - Allowed regions ~ 20-60 GeV, tan beta ~ "few"
- → Will not be seen by standard associated WH,ZH at Tevatron, LHC

Production through $gg \rightarrow top loop \rightarrow H$ not suppressed But b-bbar b/g large too.

Missing Mass resolution is critical!!

~ 250 MeV, then Low
$$\beta \Rightarrow$$
 Medium β $\sigma_{MM} \approx 100$ MeV (z,t) correction \approx ?

(30 ps timing in pots \rightarrow where p,pbar are in bunches)

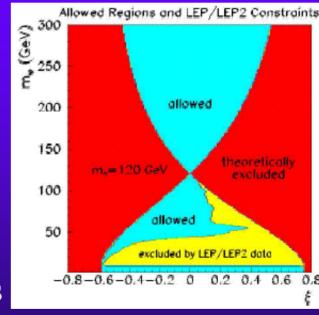
Radions?

Randall & Sundrum: SM fields on 4D brane, gravity on another displaced in 5th dimension. Heirarchy problem solvable.

Quantum fluctuations in 5th dimension: tensor + scalar RADIONS

"Graviscalar"

Radions can be much lighter than O(TeV)


..... even ~ 20 GeV if parameters right.

Couplings similar to Higgs and can mix with h
But direct coupling to gluons allowed.

gg → r dominant at Tevatron

BR $(r \rightarrow gg) \sim 75\%$, $(r \rightarrow bb) \sim 25\%$ low masses

Width ~ keV

Dominici et al.
hep-ph/0206192
ξ: mixing parameter with h

Light Gluinos and Gluinoballs

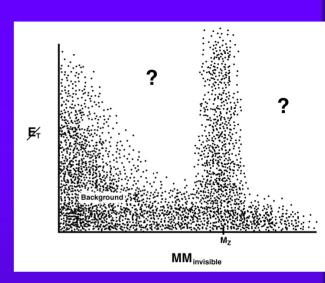
A.Mafi and S.Raby hep-ph/9912436

18

Gluino g could be lightest SUSY particle LSP Does not decay in detector --- forms heavy hadrons Can form gg bound states "gluinoballs" Expect a spectrum of excited states --- lightest is \tilde{G} 0⁺⁺ ($^{3}P_{0}$) 25 GeV $< \mathcal{M}(g) < 35$ GeV not ruled out

Cross section for exclusive production at Tevatron sizeable: Khoze, Martin and Ryskin hep-ph/0111078:

$$\sigma(p\overline{p} \to p + \tilde{G}(60\text{GeV}) + \overline{p}) \approx 20\text{fb (Tevatron)}$$


But S:B small: MM resolution!! Angular cuts, ...

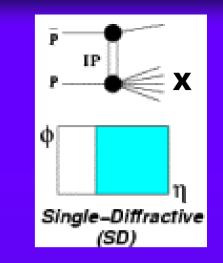
Missing Mass!

$$MM_{\text{central}}^{2} = (p_{1}+p_{2} - p_{3} - p_{4})^{2} (4 - \text{vectors})$$

$$MM_{\text{invisible}}^{2} = (p_{1}+p_{2} - p_{3} - p_{4} - \Sigma_{\text{rest}} p_{i})^{2}$$

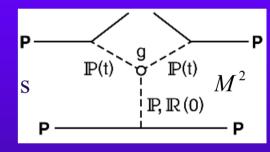
Peak at M_Z for $Z \rightarrow v\overline{v}$

ET as 3rd axis?


19

Extreme case of rest of detector completely empty
No MM peaks "expected"
But threshold bump > pair production of e.g. LSPs
Needs measurement of all forward particles
Tracking + calorimetry + dipoles (?)

Single Diffractive Excitation


$$\sigma_{inv} = \frac{m_0^2}{16\pi^2} \frac{1}{s} \sum_{iij} G_{iij}(t) \left(\frac{s}{M^2}\right)^{2\alpha_i(t)} \left(\frac{M^2}{m_0^2}\right)^{\alpha_j(0)} + \dots$$

s-dependence at various fixed t, $M^2 \Rightarrow \alpha_i(t)$

System X can be soft (all low pT) or hard (jets, W, Z).

HERA-Tevatron difference – universal screening? Pomeron trajectory probably different for hard and soft systems. Similar seen at HERA in

20

$$\gamma^* p \rightarrow \rho$$
 p (soft) and $\gamma^* p \rightarrow \psi/\Upsilon$ p (hard)

Systematic study of trajectories, needs s-dependence

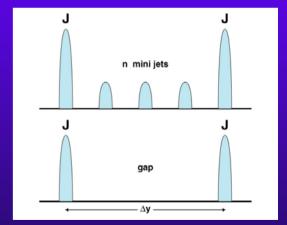
- \rightarrow run at sqrt $\{s\} = 630, 900, 1300, 1960 GeV$
- (~ log spacing, modest runs at lower sqrt{s})

BFKL and Mueller-Navelet Jets

Color singlet (IP) exchange between **quarks**Enhancement over 1g exchange – multiRegge gluon ladder

Jets with large y separation n minijets in between (inelastic case) large gap in between (elastic case)

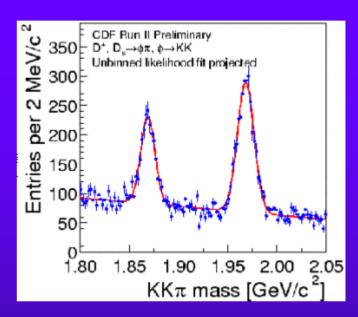

Cross section enhanced
$$\left(\frac{s}{t}\right)^{\omega}$$


$$\omega_{BFKL} = \frac{4N_c \ln 2}{\pi} \alpha_S \approx 0.5 \text{ for } \alpha_S = 0.19$$

$$\overline{n} \sim \omega \ln \left(\frac{s}{t}\right) \sim 3 - 4$$

Measure fn(η , p_T , \sqrt{s} , $\Delta \eta$)

Fundamental empirical probe of new regime: non-perturbative QCD at short distances.



Non-Diffractive Events

Inclusive production of many hadrons (pT, y)

$$J/\psi,~\chi^{0,1,2},\Lambda_c~...~\Omega_{cec}(!)$$
 $B^{\pm},B^0,\Upsilon'^{..."},\Lambda_b$ --all B baryons $X(3872)$, pentaquarks and partners Glueballs, hybrids, ...

11.6 pb^-1

Search for new and rare states for hadron spectroscopy, lifetimes, production mechanisms ...

Important for understanding NP QCD


Hadron Spectroscopy: an example

X(3872) discovered by Belle (2003) Seen ~ 1 week after by CDF! Relatively narrow

$$M_{X(3872)}$$
- $M_{J/\psi}$ - $2M_{\pi}$ = 495 MeV
 Γ < 3.5 MeV

What are its quantum numbers? Why so narrow? What is it?

 \overline{DD}^* "molecule"? or $[\{cd\} \Leftrightarrow \{\overline{cd}\}]$ state?

If we see it in exclusive DPE:

$$0^+0^{++} \Rightarrow \text{favored}$$
 $1^G J^{PC} \text{ (DPE)} \qquad 0^+0^{-+}, 0^+1^{-+}, 0^+1^{++} \Rightarrow \text{not at } 0^\circ$
 $0^+2^{++} \Rightarrow \text{not } q\overline{q}$

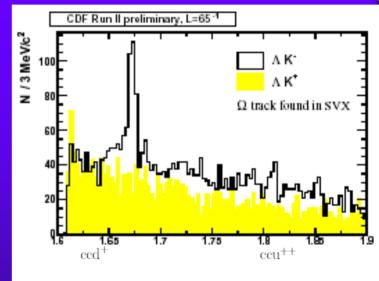
Also, cross-section depends on "size/structure" of state.

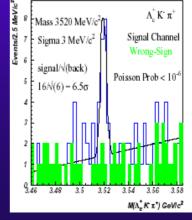
Mike Albrow GTeV DESY March 2004

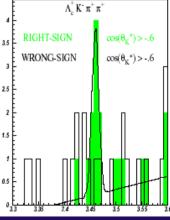
Hyperons Y and heavy flavor baryons

 $\Lambda[uds] \Xi[dss] \Omega[sss] \Rightarrow \Lambda_c[udc] \Xi_c[dsc] \Omega_c[ssc] \Rightarrow \Omega_{ccc}[ccc]$

Nice hyperon signals in Run 2 data with 2-track trigger.


"High" p_T ... small acceptance. Looking now in 0-bias data.


Best hope of finding most exotic states
Main competition is BTeV
Measure masses, lifetimes, BR's

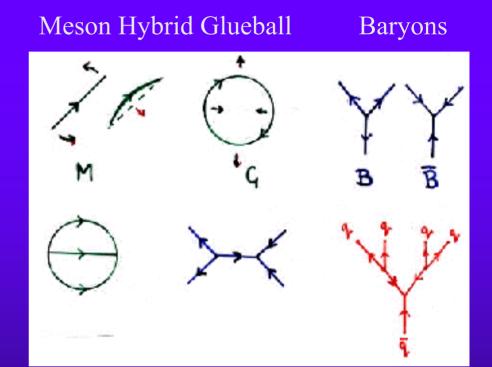

Pentaquarks: $\{ud\}\{ud\}\overline{s}, \{ss\}\{su\}\overline{d}, \{ud\}\{ud\}\overline{c}, \{ud\}\{ud\}\overline{b}, etc$

SELEX: doubly charmed baryons →

Stringy Hadrons

Topological mnemonics?

Mesons, Hybrid, Glueball, Baryon, Antibaryon


Baryonium: 2 types?

Exotics:

e.g. Pentaquarks

$$\theta^+(1540) \rightarrow nK^+, pK^0$$

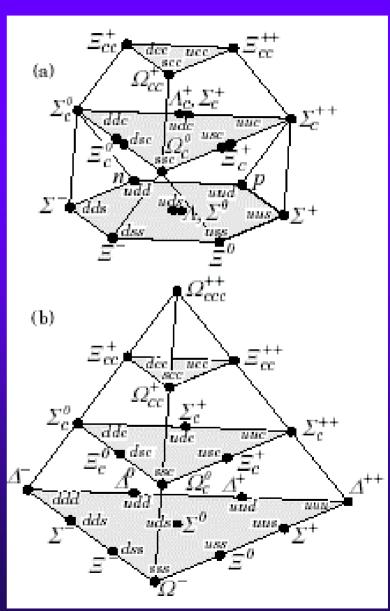
us us
$$\overline{d} \to \Sigma^+ K^0$$
, $\Xi^0 \pi^+$
ds ds $\overline{u} \to \Sigma^- K^-$, $\Xi^- \pi^-$
 θ_c , $\theta_b = ud$ ud $\overline{c}/\overline{b} \to pD^-$, nD^0 etc

Baryonium

Pentaquarks?

Exotic Baryons

There are many baryons with strange and charmed quarks.


Many not yet seen (ccc)

To say nothing of the b's: bcs, bbc, bbb

Can you think of any better way of producing and studying these than GTeV with 10^10?

Not just stamp collecting, hadrons test non-perturbative QCD (Lattice or otherwise)

Even without b-hadrons:

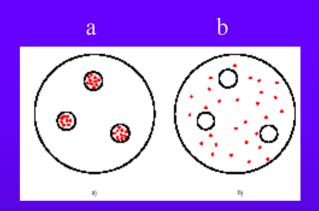
Bjorken: Low pT is the frontier of QCD

As pT drops from $200 \rightarrow 100 \rightarrow 50$ MeV what happens? Larger distances: 1 f \rightarrow 4 fm How do gluon fields in protons "cut off"?

Multiplicity distributions of very low pT particles, correlations, ... Low-pT cloud in special events

[Runs with reduced field, Si-only tracking, etcabsorption and multiple scattering is the limit]

Large impact parameter, b collisions

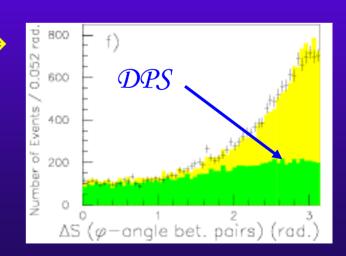

RHIC AA can measure b, how can we? Diffraction at small t

Multiple Parton Scattering

 $f(x,Q^2) \rightarrow \text{longitudinal structure of q,g/p}$

Transverse structure not studied at all!

Infinite sea of partons as $x \to 0$ Cluster around valence quarks or uniform? x-dependent distribution? Correlations in nucleon wave function Relates to proton decay


DPS = double parton scattering:

pair-wise balancing

4 jets (or photon + 3 jets, or DY + 2-jets ...)

Minijets ~ 5-10 GeV

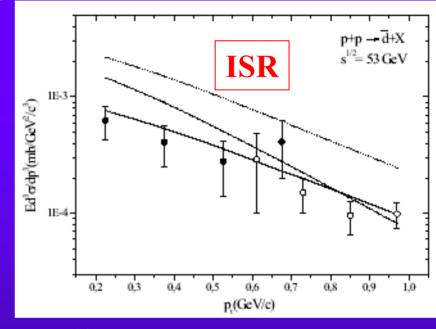
Results ("crude" from ISR, SPPS, Tevatron)

<u>Antinuclei</u>

... just for fun?

 \overline{d} observed in pp \sqrt{s} =53GeV and in pA and AA \overline{t} , anti-He₃ seen in beam (1974,Russian paper;

Na52 Pb-Pb:
$$10^6 \overline{p}$$
, $10^3 \overline{d}$, $5 \overline{H} \overline{e}_3$, $0 \overline{t}$)

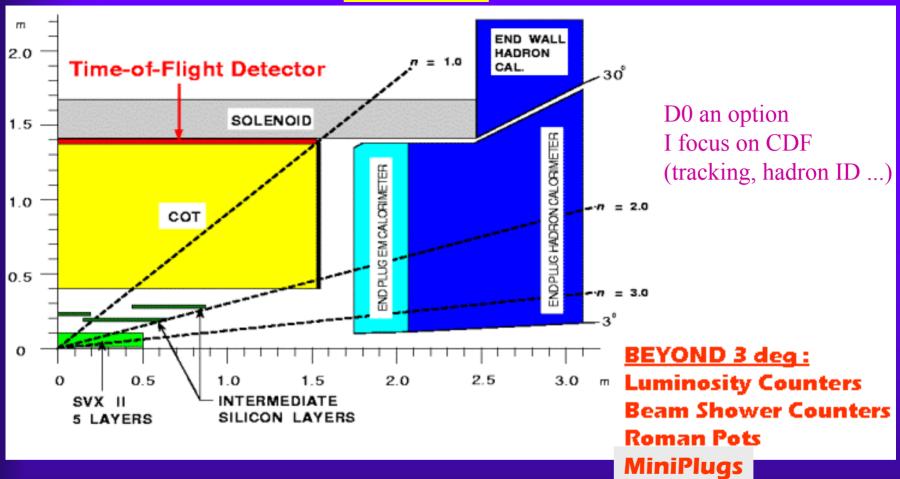

Coalescence model:

Overlap of wave-functions:

$$\overline{p} \ \overline{n} \to \overline{d}$$

ISR:

$$\frac{\overline{d}}{\pi^{-}} = 7.6 \pm 2.3 \times 10^{-6} \implies \sim 10^{6} \overline{d} \text{ in } 10^{10} \text{ events}$$

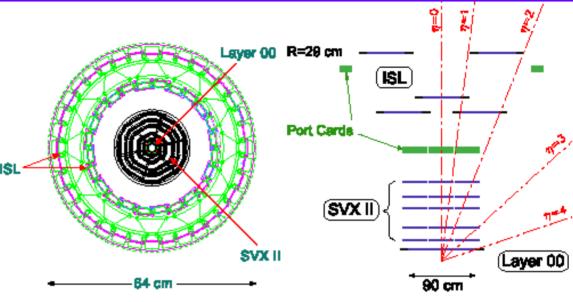


29

Exercise: understand multiple baryon formation in hadron collisions

Possible astrophysical interest: searches for antimatter in Universe (AMS) and in cosmic rays. This is the background

Detectors


Add:

New pots very forward E&W: through quadrupoles + near (55m) + far (\sim 160m?) Other forward detectors (tracking, upgrade calorimetry e.g.) \rightarrow "Cone Spectrometers" New DAQ and trigger system \rightarrow kHz

Silicon (certainly want it) ... hope it's still good (COT also)

CDF Silicon VerteX Detector SVX

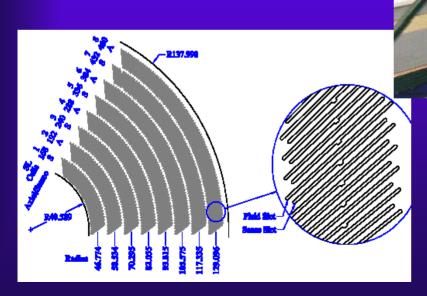
31

For beauty, charm, tau identification and measurement.

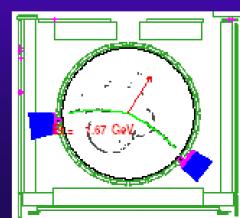
~ 720,000 strips, 25um with 50um readout

 $L00 : \sim 1.5$ cm from x, R-phi view

SVXII: 3 double 90 deg layers + 2 double 1.2 deg layers


ISL: 1 or 2 double 1.2 deg layers.

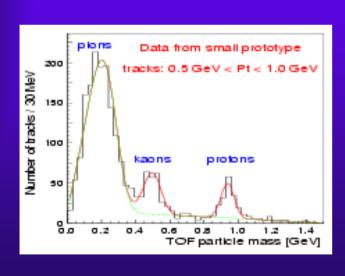
Impact parameter resolution ~ 30 um @ 1 GeV/c

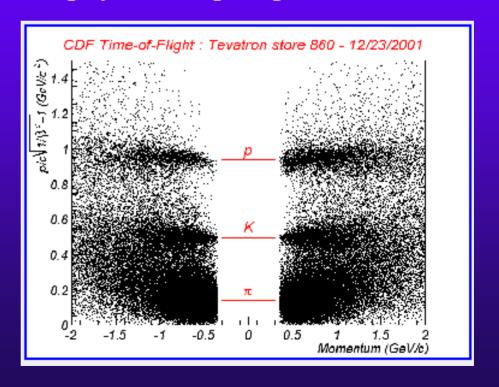

CDF Central Outer Tracker (COT)

Drift chamber
3.1m in z, 0.34-1.32m in R
96 layers → 30,240 sense wires
40 um gold-plated tungsten
ADC & TDC each end
6 um Au-mylar field sheets

Resolution ~ 150 um/wire

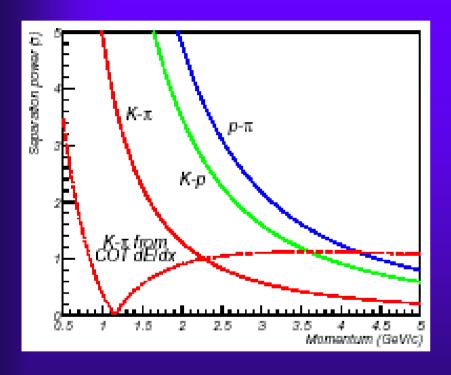
 $J/\psi \gamma$ (probably χ_c)

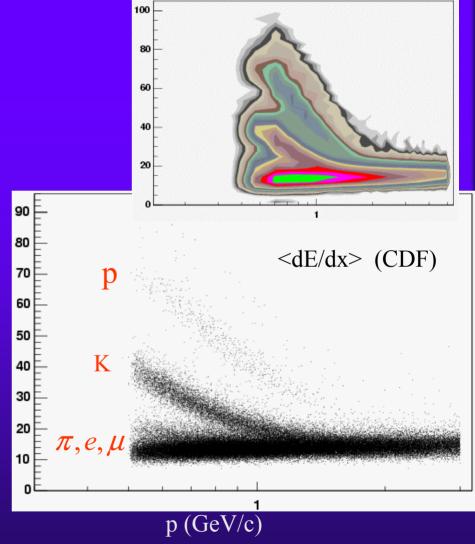



Mike Albrow

GTeV

Time of Flight Detector


Surrounds Central Outer Tracker COT 140 cm (~4.7 ns) from beam. 216 scintillator bars, each ~ 4 cm x 4 cm Both ends read out: time and pulse height Design resolution = 100 ps Design optimized for B physics, K-pi separation.



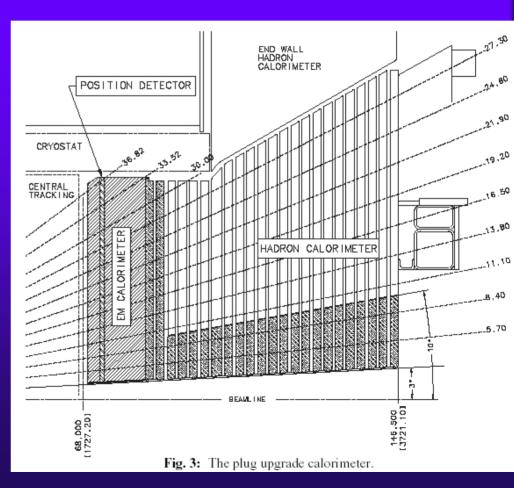
COMPARISON of TOF and COT dE/dx

Low p_T particles in range $\sim 0.3 - 3.0$ GeV/c, high identification probability

Mike Albrow GTeV DESY March 2004

Calorimetry in CDF

em: Pb-scintillator

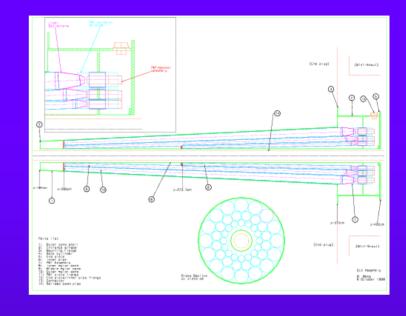

had: Fe-scintillator

+ em shower position detector (strips)

"New" (Run 2) Plug

Central: 31x [3.2mm Pb + 5mm scint] + strip (2cm) chambers at 6 Xo 32x [25mm Fe + 10mm scint]

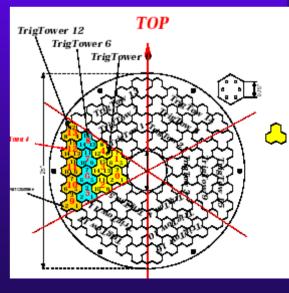
Plug: 22x [4.5mm Pb + 4mm scint] + sh.max : 5mm scint strips at 6 Xo 23x [50mm Fe + 6mm scint]



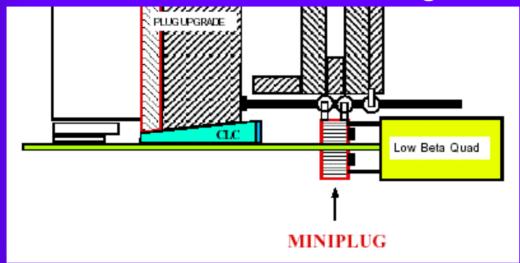
Below 3 degrees: (1) Cerenkov Luminosity Counters CLC

Al mylar cones with isobutane radiator and 1" Ham R5800Q PMT 48 each end in 3 rings of 16

$$3.7 < |\eta| < 4.7$$


(2) MiniPlug Calorimeters

36x [4.8mm Pb + 6.4mm Sc] Liquid scint + wls fibers 18 Ham R5900 PMT each end

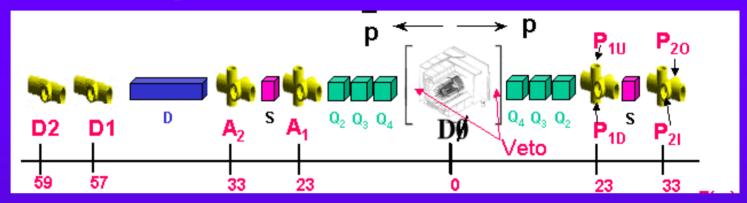

$$32 X_0, 1.3 \lambda$$
 $3.6 < |\eta| < 5.2$

New Forward Region (0.5-3.0 deg): Cone Spectrometer?

Now: 48 CLC counters + MiniPlugs

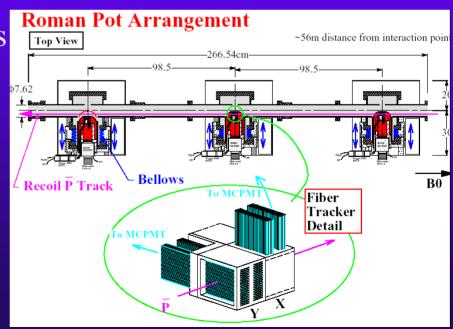
Can (remove Q1 and) push back ~ 2 m low-beta quads
Tracking e.g. GEM layers (50 um, 15 ns) over large area
Deeper Calorimeter (~8 int. lengths) high granularity, em/had
Possibility of forward dipoles (?) or toroid fields on calo iron
Upgrade motivation: Low-x with v.forward jets, J/psi?
(BFKL) J - minijets - J, J - gap - J and J + X + J ... etc

"Cone Spectrometers"

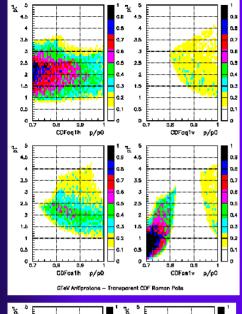

[Jets 11 & J/y)

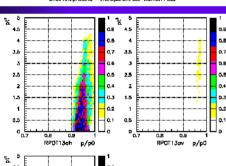
Mike Albrow GTeV DESY March 2004

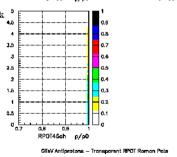
Jets, μ , e, J/ψ , γ ?


Very Forward: Roman Pots

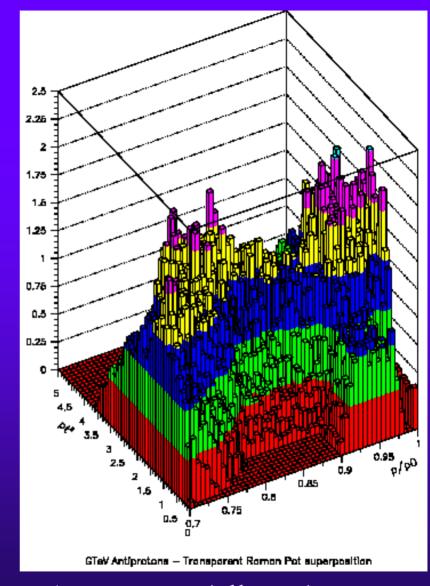
D0 has 8+8 quadrupole spectrometer pots + 2 dipole spectrometer pots Scintillating fiber hodoscopes (~ 1mm)




CDF has 3 dipole spectrometer pots 0.8 mm x-y fibers

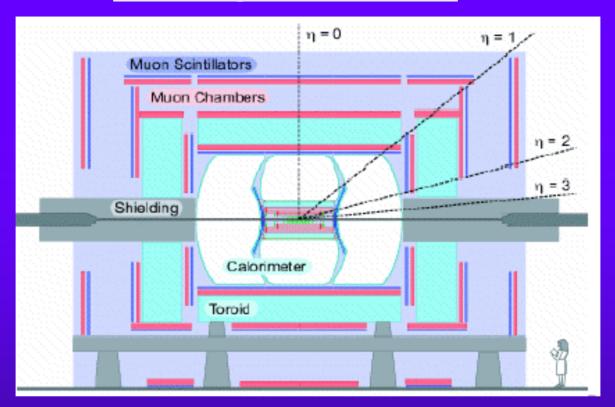

GTeV: Quads + near + far dipoles Silicon ustrips, pixels, trig scint Quartz Cerenkov for ~ 30 ps TOF

Roman Pot Acceptances (pbar)


 $\Rightarrow x_F : 0.7 \rightarrow 1.0$

Q1h Q1v

Q2h Q2v


D55h D55v {CDF}

D150h

Acceptance (all pots)

Re-using D0 detector?

Add:

New/upgrade pots very forward E&W: quad + near (55 m) + far (160 m?)

40

New DAQ and trigger system → kHz

Forward ("cone") region probably not instrumentable

Tevatron Issues

Spaces for pots and their position: quad, near dipole, far dipole Replace 3 dipoles with 2 High Field dipole(s) → ~ 4 m spaces 6.5 Tesla, same current, temperature! (Tech.Div or outside)

Momentum and Missing mass resolution. Limits? Medium-beta? p-z correlation? stability, drifts
Instrumentation: precision (~ 10 um?) BPMs at pots

Co-existence with BTeV: Luminosity (~2 - 4 e31, also high?), Beam-beam tune shift, Long-range tune shift, Electrostatic separators, Luminosity lifetime, ...

Many Subjects not Covered

Just a few:

The cosmic ray connection: very forward particle production

Jet - gap - X - gap - Jet (low mass X) different from p—X---p?

Very soft photons < 100 MeV, via conversions

Bose-Einstein correlations: directional, event type, high statistics

Many other studies will be done, as happens in CDF, D0 etc now.

GTeV plan

Forming Working Groups, conveners. Workshop at Fermilab May 20-22:

http://conferences.fnal.gov/qcdws/

CDF & D0 now \rightarrow 2009

BTeV, LHC beyond 2007

HERA, BNL, JLab, etc

Working Groups Topics

The Future of QCD at the Tevatron

What is unique for GTeV beyond 2009?

Physics Low Mass Double Pomeron

> High Mass DPE & Higgs Jet-Gap-Jet Studies+BFKL

Small-x g and g-jets Hadron spectroscopy

Single Diffractive Excitation

Exotics

Cosmic Rav issues **Event Generators**

Detectors

Simulations with Detectors

Cone Spectrometers

Roman pots ("v.forward")

Central detector

(DAQ & Trigger) Triggers L1 L2 L3

kHz DAQ

Computing on/off line, GRID

Please come!

Tevatron

High Field Dipoles

Orbit issues, beta, ES seps

43

Roman Pot insertions **BTeV-GTeV** interaction

Proposal to PAC Spring 2005 (?)

Concluding Remarks

There will be a vast amount of QCD physics still to be done in 2009. Here I have only scratched the surface. Unknown territory: discoveries likely.

The CDF and D0 detectors are great central detectors for this program, suitably upgraded at modest cost: DAQ, trigger, forward (few deg) and very forward (pots) Not all ~1500 physicists on CDF and D0 want to go to LHC We hope physicists come from DESY, BNL, JLab etc expts.

Tevatron running anyway for BTeV, so it's great value.

Let's do it!