Beyond the SM with B and K physics

Yuval Grossman

Technion
Outline

- New Physics and the flavor problem
 - The hierarchy problem
 - The new physics flavor problem
 - Types of new physics models and an example
- How can we probe the new physics?
 - Global fit
 - CP asymmetries in $b \rightarrow c\bar{c}s$ vs $b \rightarrow s\bar{s}s$
 - $B \rightarrow K\pi$
 - Polarization in $B \rightarrow VV$
 - $K \rightarrow \pi\nu\bar{\nu}$ vs B and B_s mixing
New Physics
Reasons Not to Believe the SM

1. The hierarchy problem
2. The strong CP problem
3. Baryogenesis
4. Gauge coupling unification
5. Neutrino masses
6. Gravity

- Very likely, there is new physics
- The hierarchy problem suggests

\[\Lambda \sim 4\pi m_W \sim 1 \text{ TeV} \]

- We can directly probe new physics at such a scale
The new physics flavor problem

The SM flavor puzzle: why the masses and mixing angles exhibit hierarchy. This is not what we refer to here.

The SM flavor structure is special

- Universality of the charged current interaction
- FCNCs are highly suppressed

Any NP model must reproduce these successful SM features.
The new physics flavor scale

- **K physics**: ϵ_K

 \[
 \frac{s\bar{d}s\bar{d}}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^4 \text{ TeV}
 \]

- **D physics**: $D - \bar{D}$ mixing

 \[
 \frac{c\bar{u}c\bar{u}}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^3 \text{ TeV}
 \]

- **B physics**: $B - \bar{B}$ mixing and CPV

 \[
 \frac{b\bar{d}b\bar{d}}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^3 \text{ TeV}
 \]

There is no exact symmetry that can forbid such operators.
Flavor and the hierarchy problem

There is tension:

- The hierarchy problem $\Rightarrow \Lambda \sim 1 \text{ TeV}$
- Flavor bounds $\Rightarrow \Lambda > 10^4 \text{ TeV}$

Any TeV scale NP has to deal with the flavor bounds

\downarrow

Such NP cannot have a generic flavor structure

Flavor is mainly an input to model building, not an output
Dealing with flavor

Any viable NP model has to deal with this tension

- The NP is flavor blind, MFV (GMSB; UED)
- Small effects in flavor physics
Dealing with flavor

Any viable NP model has to deal with this tension

- The NP is flavor blind, MFV (GMSB; UED)
 - Small effects in flavor physics
- Flavor suppression mainly of first two generations (Heavy \tilde{q}; RS)
 - Large effects in the B and B_s systems
Dealing with flavor

Any viable NP model has to deal with this tension

- The NP is flavor blind, MFV (GMSB; UED)
 - Small effects in flavor physics
- Flavor suppression mainly of first two generations (Heavy \tilde{q}; RS)
 - Large effects in the B and B_s systems
- Generic suppression (SUSY alignment; split fermions)
 - Can be tested with flavor physics
Dealing with flavor

Any viable NP model has to deal with this tension

- The NP is flavor blind, MFV (GMSB; UED)
 - Small effects in flavor physics

- Flavor suppression mainly of first two generations (Heavy \tilde{q}; RS)
 - Large effects in the B and B_s systems

- Generic suppression (SUSY alignment; split fermions)
 - Can be tested with flavor physics

- Generic models
 - Huge effects in flavor physics: already ruled out
Example: Randall-Sundrum

- The RS model solves the hierarchy problem with one extra non-factorizable dimension: \(m = M_{PL} \exp(-k y) \)

- Solving the hierarchy problem requires a “TeV brane” at \(k y \sim 40 \), where the Higgs is localized

- Placing the fermions in the bulk can generate the observed flavor structure

- Generic new operators appear with scale of order

 \[
 \Lambda \sim M_{PL} \exp(-k y^f)
 \]

 where \(y^f \) is the “localization” of the fermion \(f \)

- Heavy fermions have larger \(y^f \) and thus larger flavor violation effects
Fermions in Randall-Sundrum

The effective NP scale is
\[\Lambda \sim M_{PL} \exp(-k y) \]
Probing new physics with mesons

Bottom line

- Any new physics model has to deal with flavor
- In some cases we expect large effects in meson physics
- It is plausible that we can see such effects in rare processes
 - Meson mixing
 - Loop mediated decays
 - CKM suppressed amplitudes
Current hints for new physics
At present there is no significant deviation from the SM predictions in the flavor sector
At present there is no significant deviation from the SM predictions in the flavor sector

Global fit
At present there is no significant deviation from the SM predictions in the flavor sector

- Global fit

Yet, there are a few hints:

- $a_{CP}(B \to \psi K_S) \text{ vs } a_{CP}(B \to \phi K_S)$
- $B \to K\pi$
- Polarization in $B \to VV$ decays
- $K \to \pi\nu\bar{\nu}$ vs B and B_s mixing
- and more...
Overconstraining the unitarity triangle

\[(\rho, \eta) \]

\[V_{ud}V_{ub}^* \quad \alpha \quad V_{td}V_{tb}^* \]

\[\gamma \quad V_{cd}V_{cb}^* \quad \beta \]
Current status of the global fit

$V_{cb}, V_{ub}/V_{cb}, \varepsilon_K, B - \bar{B} \text{ mixing}, B_s \text{ mixing}, a_{CP}(B \rightarrow \psi K_S)$

Hocker et al. (CKMfitter)

Good agreement
(1) CP asymmetries in $b \rightarrow s\bar{s}s$ modes

- Time dependent CP asymmetries measure the phase between the mixing and twice the decay amplitudes

- In the SM
 - $\arg(A_{mix}) = 2\beta$
 - $\arg(A_{b\rightarrow c\bar{s}s}) = 0$ (Tree) $B \rightarrow \psi K_S$
 - $\arg(A_{b\rightarrow s\bar{s}s}) = 0$ (Penguin) $B \rightarrow \phi K_S, B \rightarrow \eta' K_S, B \rightarrow K^+ K^- K_S$

- To first approximation the SM predicts
 \[
 a_{CP}(B \rightarrow \psi K_S) = a_{CP}(B \rightarrow \phi K_S) = 0
 \]
 \[
 a_{CP}(B \rightarrow \eta' K_S) = -a_{CP}(B \rightarrow K^+ K^- K_S) = \sin 2\beta
 \]

- The theoretical uncertainties are less than $O(5\%)$ for the two body decays and $O(20\%)$ for the three body decay
To first approximation, these asymmetries are equal in the SM

- $S_{\phi K_S} - S_{\psi K_S} \neq 0$ at 2.7σ
- $S_{K^+K^- K_S}$ is not as clean as the other modes

The anomaly: why $S_{\phi K_S} \neq S_{\psi K_S}$
Explanation of $S_{\psi K_S} \neq S_{\phi K_S} \neq S_{\eta' K_S}$

Since $B \rightarrow \eta' K_S$ and $B \rightarrow \phi K_S$ are one loop in the SM we expect large new physics effects.

Due to different hadronic matrix elements we expect the shift from $\sin 2\beta$ to be different in the two modes.

$B \rightarrow \psi K_S$ is a CKM favored tree level decay in the SM

⇒ we expect small new physics effects

↓

New physics in $b \rightarrow s\bar{s}s$ generally gives $S_{\psi K_S} \neq S_{\phi K_S} \neq S_{\eta' K_S}$
(2) $B \rightarrow K\pi$

Consider the four decays

\[B^+ \rightarrow K^0\pi^+ \quad b \rightarrow d\bar{s}s \]
\[B^+ \rightarrow K^+\pi^0 \quad b \rightarrow d\bar{s}s \quad \text{or} \quad b \rightarrow u\bar{u}s \]
\[B^0 \rightarrow K^+\pi^- \quad b \rightarrow u\bar{u}s \]
\[B^0 \rightarrow K^0\pi^0 \quad b \rightarrow d\bar{s}s \quad \text{or} \quad b \rightarrow u\bar{u}s \]

- In the SM these modes can be used to measure γ (Fleischer, Gronau, Mannel, Neubert, Rosner)

- There are many SM relations between these modes that can be used to look for new physics (Fleischer-Mannel, Neubert-Rosner, Lipkin sum rule)
\(B \rightarrow K\pi \) diagrams

\[
(P) + (P_{EW})
\]

\[
(T)
\]

\(P \) is a loop amplitude, but due to CKM factors \(P \gg T \)
The Lipkin sum rule

Using isospin only

\[R_L = \frac{2\Gamma(B^+ \rightarrow K^+\pi^0) + 2\Gamma(B^0 \rightarrow K^0\pi^0)}{\Gamma(B^+ \rightarrow K^0\pi^+) + \Gamma(B^0 \rightarrow K^+\pi^-)} \]

\[= 1 + O\left(\frac{P_{EW} + T}{P}\right)^2 \]

Experimentally \(R_L = 1.24 \pm 0.10 \)

Using \(P_{EW}/P \sim T/P \sim 0.1 \) we expect theoretically

\[R_L = 1 + O(10^{-2}) \]

The deviation of \(R_L \) from 1 is an \(O(2\sigma) \) effect
Explanation of $R_L - 1 \gg 10^{-2}$

- Experimentally $R_L = 1.24 \pm 0.10$
- New “Trojan penguins”, P_{NP}, which are isospin breaking ($\Delta I = 1$) amplitudes, modify the Lipkin sum rule

$$R_L = 1 + O \left(\frac{P_{NP}}{P} \right)^2$$

- Need a large effect, $P_{NP} \approx P/2$
- In many models there are strong bounds from $b \rightarrow s\ell^+\ell^-$
- Leptophobic Z' is a working example

Gronau and Rosner

Kagan, Neubert, YG
(3) Polarization in $B \rightarrow VV$ decays

- Consider B decays into light vectors
 \[B \rightarrow \rho \rho \quad B \rightarrow \phi K^* \quad B \rightarrow \rho K^* \]

- Due to the left handed nature of the weak interaction in the SM in the $m_B \rightarrow \infty$ limit we expect

 \[
 \frac{R_T}{R_0} = O \left(\frac{1}{m_B} \right)
 \]

 \[
 \frac{R_{\perp}}{R_{\parallel}} = 1 + O \left(\frac{1}{m_B} \right)
 \]
Polarization data

\[R_0(B \to \phi K^*) = 0.54 \pm 0.10 \quad \text{(BaBar and Belle)} \]
\[R_\perp(B \to \phi K^*) = 0.41 \pm 0.11 \quad \text{(Belle)} \]
\[R_0(B \to \rho K^*) = 0.96 \pm 0.16 \quad \text{(BaBar)} \]
\[R_0(B \to \rho\rho) = 0.96 \pm 0.06 \quad \text{(BaBar and Belle)} \]

\[R_0 + R_\perp + R_{||} = 1 \implies R_{||}(B \to \phi K^*) = 0.05 \pm 0.15 \]

- **SM prediction:** \(R_T/R_0 \ll 1 \)
 - \(B \to \rho\rho, B \to K^*\rho : R_T/R_0 \ll 1 \)
 - \(B \to \phi K^* : R_T/R_0 = O(1) \)
- **SM prediction:** \(R_\perp/R_{||} \approx 1 \)
 - \(B \to \phi K^* : R_\perp/R_{||} \gg 1 \)
Explaining the polarization data

- The SM predictions do not hold in $B \rightarrow \phi K^*$
- This is a penguin $b \rightarrow s\bar{s}s$ decay
- SM explanation: the $1/m_B$ correction may be large for penguins and small for tree amplitudes
- New physics explanation: right handed current operators can explain the polarization data
- Polarization measurements for other modes are important, e.g., the penguin mode $B \rightarrow K^{*0} \rho^+$
\((4) \ K \rightarrow \pi \nu \bar{\nu} \)

\(K \rightarrow \pi \nu \bar{\nu} \) is a very good probe of the unitarity triangle

- Dominated by \(s \rightarrow d \) penguin with internal top \(\Rightarrow \) sensitivity to \(|V_{td}| \).
- Isospin and perturbative QCD can be used to eliminate almost all the hadronic uncertainties
- In many cases, new physics affects \(B \) and \(K \) differently
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ data

Experimentally

$$\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (15.7^{+17.5}_{-8.2}) \times 10^{-11}$$

The SM predicts

$$\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = 4.4 \times 10^{-11} \times [\eta^2 + (1.4 - \rho)^2]$$

- $|V_{ub}|$ tells us that $\eta \lesssim 0.4$
- B and B_s mixing tell us that $\rho > 0$
- To get the central value of $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ we need $\rho < 0$
B vs K unitarity triangle

$B(K^+ \rightarrow \pi^+ \nu \nu)$:

- Central value (no exp error)
- Full 1σ lower bound

68% C.L.
Explanation of $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$

- New physics in B or B_s mixing: the K unitarity triangle is correct
- New physics in $s \rightarrow d$ penguin: the B unitarity triangle is correct
- Higher precision in $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ and a measurement of $\mathcal{B}(K_L \rightarrow \pi^0 \nu \bar{\nu})$ are important
Conclusions
Conclusions

- It is likely that there is new physics at a TeV
- Such new physics can show up in K, D and B physics
- No signal yet, but there are intriguing results
Backup slides
The NP scale

- Low energy observables put severe constraints on NP models
- Generally we have the most general operators
 \[\frac{QQQL}{\Lambda^2} \Rightarrow \text{proton decay} \Rightarrow \Lambda \gtrsim 10^{16} \text{ GeV} \]
 \[\frac{LLHH}{\Lambda} \Rightarrow \text{neutrino masses} \Rightarrow \Lambda \sim 10^{15} \text{ GeV} \]
- Proton decay and neutrino masses can be protected by conserve symmetries like $B - L$ or R-parity.

What about flavor bounds?
What NP can do?

Modify the low energy effective Hamiltonian

- New contributions to SM operators
- Generate new operators
- New CPV phases

NP cannot do everything

- Cannot change things we “know”, like QCD
- Unlikely to compete with “large” SM contributions:
 \((b \rightarrow c\bar{u}d) \) is mainly SM

In general NP can affect observables that are suppressed in the SM: Meson mixing, loop mediated decays and CKM suppressed amplitudes
Example: Z' exchange

$B - \bar{B}$ mixing

\[\propto \frac{k_{bd}^* k_{db}}{m_{Z'}^2} \]
Example: Z' exchange

\[b \rightarrow s\bar{q}q \]

\[\propto \frac{\kappa_{bs}^* \kappa_{qq}}{m_{Z'}^2} \]

Similar contributions exist in other NP models.
Possible explanation

Can we get

\[S_{\phi K_S} \neq S_{\psi K_S} \text{ with } S_{\eta^I K_S} = S_{\psi K_S} \]

- \(B \to \phi K_S \) is parity conserving while \(B \to \eta^I K_S \) is parity violating

- Parity conserving new physics in \(b \to s \) penguins only affect \(B \to \phi K_S \)

- Generically, new physics models are not parity conserving

- Supersymmetric \(SU(2)_L \times SU(R) \times \text{Parity models} \) provide a framework for approximate parity conserving new physics

Kagan