Electroweak Measurements from Run II at the Tevatron

Presented on behalf of CDF and DØ by:

Terry Wyatt
University of Manchester, UK

With special thanks to the other members of the Tevatron Electroweak Working Group:
Sarah Eno, Harald Fox, Martin Grünewald, Eva Halkiadakis, Eric James, Ashutosh Kotwal, Giulia Manca, Sean Mattingly, Pasha Murat, Emily Nurse, Michael Schmitt, Georg Steinbrück, Paul Telford, Alexei Varganov, Marco Verzocchi, Junjie Zhu
Overview

• Introduction
• Measurements of:
 – $\sigma_Z \cdot \text{Br}(Z \to l^+l^-)$
 – $\sigma_W \cdot \text{Br}(W \to l\nu)$
• CDF + DØ combinations:
 – $\sigma_Z \cdot \text{Br}(Z \to l^+l^-)$, $\sigma_W \cdot \text{Br}(W \to l\nu)$
 – $R = \frac{\sigma_W \cdot \text{Br}(W \to l\nu)}{\sigma_Z \cdot \text{Br}(Z \to l^+l^-)}$
• Other measurements with W and Z
• Di-boson production
• Summary and Outlook
Delivered and Collected Luminosity

Tevatron Run II: proton-antiproton collisions at 1.96 TeV
W and Z Production

- Need accurate knowledge of PDFs:
 - modify longitudinal boost \rightarrow experimental acceptance
- “Correct” for photon: $N_Z = N_{\text{cand}} \cdot \left[\frac{\sigma_Z}{\sigma_{Z\gamma}} \right]_{\text{MC}}$
Experimental Signature: $Z \rightarrow l^+l^-$

- pair of charged leptons:
 - high p_T
 - isolated
 - opposite-charge

- redundancy in trigger and offline selection
- low backgrounds
- control of systematics
Experimental Signature: $W \rightarrow l\nu$

- single charged lepton:
 - high p_T
 - isolated
- E_T^{miss} (from neutrino)
- less redundancy in trigger and offline selection
- more difficult to control backgrounds and systematics
- need to understand hadronic recoil
- but more ‘interesting’ than Z! (post-LEP)
- $\sigma \cdot \text{Br}$ 10 times larger than Z
DØ $Z \rightarrow \mu^+\mu^-$

(updated for this conference)

Event selection:
- Two central tracks:
 - ‘loose’ μ-id
 - $p_T > 15$ GeV
 - opposite charge
 - $|\eta| < 1.8$
- $M_{\mu\mu} > 30$ GeV
- Cosmic veto
- ≥ 1 isolated μ

- Dominant systematics:
 - luminosity: 10%
 - efficiency measurements from $Z \rightarrow \mu^+\mu^-$ data: 3.3%
 (statistics limited)

- $N_{\text{cand}} = 6126$
- $\int \mathcal{L} = 117$ pb$^{-1}$
- Backgrounds:
 - QCD: $(0.6 \pm 0.3)\%$
 - $Z \rightarrow \tau^+\tau^-$: $(0.5 \pm 0.1)\%$
- $\varepsilon_{\text{total}} = 19\%$

![DØ Run II Preliminary](image)

6126 events
$\int \mathcal{L} = 117$ pb$^{-1}$
$|\eta| < 1.8$
Measuring Efficiencies using the $Z \rightarrow \mu^+\mu^-$ data

- There are two μ's
- The backgrounds are low
- Can select pure Z sample with even looser cuts on one μ

\[\sigma_Z \cdot Br(Z \rightarrow \mu^+\mu^-) = 261.8 \pm 5.0 \pm 8.9 \pm 26.2 \text{ pb} \]

stat. syst. lumi.
CDF: $Z \rightarrow \mu^+\mu^-$

Event selection:
- Two central tracks:
 - $p_T > 20$ GeV
 - opposite charge
 - minimum ionizing in CAL
 - at least one $|\eta| < 0.6$
 - both $|\eta| < 1.0$
- $66 < M_{\mu\mu} < 116$ GeV
- Cosmic veto
 - cosmic background (0.9 ± 0.9) %

$N_{\text{cand}} = 1631$
$\int L = 72$ pb$^{-1}$
$\epsilon_{\text{total}} = 9\%$

$\sigma_Z \cdot \text{Br}(Z \rightarrow \mu^+\mu^-) = 246 \pm 6 \pm 12 \pm 15$ pb
stat. syst. lumi.
CDF and DØ $Z \rightarrow e^+e^-$

Two isolated electrons, $E_T > 25$ GeV, $|\eta| < 1.1$

CDF: $\sigma_Z \cdot Br(Z \rightarrow e^+e^-) = 267.0 \pm 6.3 \pm 15.2 \pm 16.0$ pb

DØ: $\sigma_Z \cdot Br(Z \rightarrow e^+e^-) = 275 \pm 9 \pm 9 \pm 28$ pb

$N_{\text{cand}} = 1631$

$\int \mathcal{L} = 42$ pb$^{-1}$

stat. syst. lumi.
CDF: $W \rightarrow e \nu$

- $p_T(e) > 25$ GeV
- $E_T^{\text{miss}} > 25$ GeV
- $N_{\text{cand}} = 38628$
- QCD background estimate
 - $(3.5 \pm 1.7)\%$

$\sigma_W \cdot \text{Br}(W \rightarrow e \nu) = 2.64 \pm 0.01 \pm 0.09 \pm 0.16$ nb stat. syst. lumi.
CDF: $W \rightarrow \mu \nu$

- $p_T(\mu) > 20$ GeV
- $E_T^{\text{miss}} > 20$ GeV
- $N_{\text{cand}} = 21599$
- Backgrounds: $(10.8\pm1.1)\%$

- Systematics:
 - PDFs 2.6%
 - hadronic recoil 1.6%

$\sigma_W \cdot \text{Br}(W \rightarrow \mu \nu) = 2.64 \pm 0.02 \pm 0.12 \pm 0.16$ nb

 stat. syst. lumi.
DØ: \(W \rightarrow e \nu \) and \(W \rightarrow \mu \nu \)

- \(p_T(e) > 25 \text{ GeV} \)
- \(E_T^{\text{miss}} > 25 \text{ GeV} \)
- \(N_{\text{cand}} = 27370 \)
- \(\int L = 42 \text{ pb}^{-1} \)
- \(p_T(\mu) > 20 \text{ GeV} \)
- \(E_T^{\text{miss}} > 20 \text{ GeV} \)
- \(N_{\text{cand}} = 8302 \)
- \(\int L = 17 \text{ pb}^{-1} \)

\[\sigma_W \cdot \text{Br}(W \rightarrow e \nu) = 2.884 \pm 0.021 \pm 0.128 \pm 0.284 \text{ nb} \]
\[\sigma_W \cdot \text{Br}(W \rightarrow \mu \nu) = 3.226 \pm 0.128 \pm 0.100 \pm 0.322 \text{ nb} \]
CDF: $W \rightarrow \tau \nu$

- Look for jet within narrow 10 degree cone
- Isolated within wider 30 degree cone
- $p_T(\tau) > 25$ GeV
- $E_T^{\text{miss}} > 25$ GeV
- $N_{\text{cand}} = 2345$

$\sigma_W \cdot \text{Br}(W \rightarrow \tau\nu) = 2.62 \pm 0.07 \pm 0.21 \pm 0.16$ nb

stat. syst. lumi.
Comparing and Combining $\sigma \cdot Br\ (W,Z)$ Measurements from CDF and DØ

- **Luminosity determination:**
 - measure total rate of inelastic pp collisions

- $\sigma_{inelastic}$
 - measurements by CDF and E811 @ 1.8 TeV disagree at ~3σ level
 - different methods of averaging CDF and E811 give values in the range:
 - $59.1 < \sigma_{inelastic} < 60.7$ mb (extrapolated to 1.96 TeV)
 (2.7% difference)

- **For $\sigma \cdot Br\ (W,Z)$ results quoted above:**
 - CDF uses $\sigma_{inelastic} = 60.7$ mb
 - DØ uses $\sigma_{inelastic} = 57.6$ mb (5.3% difference)
Comparing and Combining $\sigma \cdot Br (W,Z)$ Measurements from CDF and DØ

For “my combinations”§ presented below I have chosen to:

– Scale reported $\sigma \cdot Br (W,Z)$ values to correspond to consistent value of $\sigma_{\text{inelastic}}$
 • Arbitrarily chose: $\sigma_{\text{inelastic}} = 60.7 \text{ mb}$
 • Multiply $\sigma \cdot Br (DØ)$ by factor 1.053

– Quote additional 2.7% syst. error to cover ambiguity in choice of $\sigma_{\text{inelastic}}$
 • total error of $(4 + 2.7 = 4.8)\%$ assumed for $\sigma_{\text{inelastic}}$
 • 100% correlated between CDF and DØ

– PDFs next most significant error (1—3)%

N.B.

§ These issues have been discussed within Tevatron EWWG, but ….

§ No official policy yet agreed by CDF and DØ

§ “my combinations” should be taken as the responsibility of a review speaker: not official CDF / DØ results
Standard Model:
\[\sigma_Z \cdot Br(Z \rightarrow l^+l^-) = 252 \pm 9 \text{ pb} \]
- NNLO calculation
- NNLO MRST2002 PDFs
- 3.5% uncertainty assessed using CTEQ error PDFs
 [But also see talk by Robert Thorne at this conference]
- LEP \(Br(Z \rightarrow l^+l^-) = 0.03366 \pm 0.00002 \)

Tevatron Average
\[\sigma_Z \cdot Br(Z \rightarrow l^+l^-) = 258 \pm 10 \pm 16 \text{ pb} \]
expt. lumi.

expt. error from counting Z's
→ statistics limited
Standard Model:
\[\sigma_w \cdot \text{Br}(W\rightarrow l\nu) = 2.72 \pm 0.10 \text{ nb} \]
- NNLO calculation
- NNLO MRST2002 PDFs
- 3.5% uncertainty assessed using CTEQ error PDFs
- SM \text{Br}(W\rightarrow l\nu) = .1082 \pm .0002

Tevatron Average
\[\sigma_w \cdot \text{Br}(W\rightarrow l\nu) = 2.69 \pm 0.09 \pm 0.17 \text{ nb} \]

N.B. expt. error will always be smaller than lumi.
In the future we can use \(\sigma \cdot \text{Br}(W, Z) \) to determine the luminosity
\[R = \frac{\sigma_W \cdot \text{Br}(W \rightarrow l\nu)}{\sigma_Z \cdot \text{Br}(Z \rightarrow l^+l^-)} \]

- Luminosity error cancels
- Other important systematics partially cancel:
 - PDFs
 - Experimental: high p_T, isolated leptons
- Tevatron EWWG:
 - Evaluated correlated systematics
 - Performed ‘official’ average of CDF(e, μ) and DØ(e) — shown at EPS-Aachen
- Update including DØ(μ) here
Tevatron measurements of

\[R = \sigma \times \text{Br}(W \rightarrow l\nu)/\sigma \times \text{Br}(Z \rightarrow ll) \]

10.59 ± 0.20 Run (I + II)

10.61 ± 0.30 Run II

\[^\S \text{Standard Model} \]

\[^\S \text{Tevatron combined} \]

\[^\S \text{Run I + II combined} \]

\[^\S \text{DØ (e)} \]

\[^\S \text{DØ (µ)} \]

\[^\S \text{CDF (e)} \]

\[^\S \text{CDF (µ)} \]

\[^\S \text{Tevatron combined} \]

\[^\S \text{Run I} \]

\[^\S \text{DØ (e)} \]

\[^\S \text{CDF (e)} \]

\[^\S \text{my combination} \]
Indirect measurement of $\text{Br}(W \rightarrow l\nu)$

$$R = \frac{\sigma_W}{\sigma_Z} \frac{\text{Br}(W \rightarrow l\nu)}{\text{Br}(Z \rightarrow l^+l^-)}$$

σ_W, σ_Z NNLO LEP calculation

$\text{Br}(W \rightarrow l\nu)$ (\%)

- $W \rightarrow l\nu$
 - LEP: 10.74 ± 0.09
 - TeV: 10.60 ± 0.26

- $W \rightarrow \tau\nu$
 - LEP: 11.20 ± 0.22

- $W \rightarrow \mu\nu$
 - LEP: 10.55 ± 0.16
 - TeV: 11.11 ± 0.41

- $W \rightarrow e\nu$
 - LEP: 10.59 ± 0.17
 - TeV: 10.48 ± 0.27

Standard Model

§ 'my combination'
Indirect measurement of Γ_W:

- $\text{Br}(W \rightarrow l\nu) = \frac{\Gamma(W \rightarrow l\nu)}{\Gamma_W}$

Tevatron combined result:\n$\Gamma_W = 2.135 \pm 0.053$ GeV

cf LEP+Tevatron direct measurements:\n$\Gamma_W = 2.139 \pm 0.069$ GeV

Promising future for such measurements with ~ 2 fb$^{-1}$:
- $O(10^6)$ $W \rightarrow l\nu$ events per channel per experiment
- $O(10^5)$ $Z \rightarrow l^+l^-$ events per channel per experiment for calibration
- LEP2: $O(10^3)$ $W \rightarrow l\nu$ decays per channel per experiment

§ “my combination”
Other measurements with W, Z events

- High mass tail of Z

- Forward-backward asymmetry
Other Measurements with W, Z Events

- Data/MC comparisons for $p_T(Z)$

$Z \rightarrow \mu^+\mu^-$ → probe QCD phenomenology

Many more such measurements to come:
- e.g., W/Z rapidity → probe PDFs
Looking for $Z \rightarrow \tau^+\tau^-$

- Look for isolated, high p_T e or μ opposite narrow hadronic jet

CDF

DØ

- small numbers of candidates
- rates consistent with expectations
CDF W_γ, Z_γ Events

- Require central γ
- $E_T(\gamma) > 7$ GeV
- $\Delta R(l-\gamma) = \sqrt{(\Delta \eta^2 + \Delta \Phi^2)} > 0.7$

∫$L = 128$ pb$^{-1}$

σ • Br quoted for these cuts

47 seen
43 expected

133 seen
141 expected.

$σ \cdot Br = 5.8 \pm 1.0$ (stat.) ± 0.4 (syst.) ± 0.4 (lumi.) pb

$σ \cdot Br = 17.2 \pm 2.2$ (stat.) ± 2.0 (syst.) ± 1.1 (lumi.) pb
CDF $W W$ Search

- isolated lepton pair
- opposite-charge, high p_T
- E_T^{miss}
- Z veto
- veto events with jets
- $\int \mathcal{L} = 126 \text{ pb}^{-1}$
- 5 events seen
- 9.2 events expected

 (2.3 background, 6.9 ± 1.5 $W W \rightarrow l\nu l\nu$)

\[
\sigma_{\text{meas}}^{p\bar{p} \rightarrow WW} = 5.1^{+5.4}_{-3.6} \text{ (stat)} \pm 1.3 \text{ (syst)} \pm 0.3 \text{ (lumi)} \text{ pb} .
\]

\[
\sigma_{\text{theo: NLO}}^{p\bar{p} \rightarrow WW} = 13.25 \pm 0.25 \text{ pb} \quad \text{J.M.Campbell, R.K.Ellis} \quad \text{hep--ph/9905386}
\]
Summary, Outlook

• EW analyses with Run II $\int L > 100$ pb$^{-1}$ becoming available
• Detectors/triggers/simulations becoming better understood → entire physics programme benefits
• Looking forward to a flood of new EW results this autumn:
 – σ • Br (W,Z) and ratios
 – QCD of W,Z production
• Tevatron EWWG becoming very active
 – Need more streamlined procedure for CDF/DØ to approve combinations of updated measurements
 • once combination methods are well-established