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WIMPs as Non-Baryonic Cold Dark Matter

There is evidence in both astronomical
observations and modern cosmology
that most matter in the universe is

dark and non-baryonic.
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Leaves a relic abundance:

W,h » 3" 107" em’ st/ & 4V 13,
Cold Dark Matter Search (CDMS) experiment looks for WIMPs, which deposit few to
few tens of keV energy when they elastically recoil off Ge or Si nuclei at 20mK at the
rate < 1 event/kg/d. Underground experimental environment, active scintillation muon
veto, shields of lead, polyethylene and copper provide the required low background

conditions. And more important, CDMS detectors themselves have event by event
background rejection capability.

CDMS ZIP Detectors
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CDMS ZIP detector is 250¢g (100g) germanium (silicon) ‘puck’, which has two charge
collection channels and four ballistic phonon collection channels. When particles
recoil off an electron or nucleus in the target material (Ge or Si), electron-hole pairs
and phonons are generated. Electron-hole pairs are separated under external electric
field, and are collected with charge integrators in inner and/or outer electrodes.

= -

Phonon A =

Rfeedback

-
Q outer

Z-sengtive Qinner . P _-‘-" /

|onization and v o, o
Phonon-mediated %= he E !! Eﬂ )

Phonon sensors are Al ballistic phonon trapping fins and W transition-edge sensors
(TES). Quasiparticles created by phonons captured in Al fins diffuse into W TES. The
resistance change in TES gives a current change (signal) in electrothermal feedback
circuit (shown above). And the signal is read out with SQUID system.
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» Four phonon channels A, B, C, D Y

» Phonons travel across the detector in quasi- ]
ballistic mode, average phonon speed in Si collimator
(Ge) crystal of 0.25 (0.12) cm/ms results in
measurable delays between the pulses of the - .
4 phonon channels X

* X, y coordinates of interaction location can be
reconstructed with four phonon channel’s
pulse start time

» Z-coordinate reconstruction is in progress

» Frequency down conversion of phonons
depends on depth of interaction and this is the
risetime handle of the phonon pulses
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CDMS Background Discrimination

Underground experimental environment reduces muon flux by orders of magnitude
Active scintillation paddles veto muon-induced events

Lead, polyethylene and pure copper shields suppress radioactive background
Nitrogen gas purge keeps Radon away during detector storage and handling
Cutting off events in outer charge channel rejects part of photo n background

Neutron background is estimated by looking at multiple scattering events and
relative event rates in Ge nuclei and Si nuclei

Detectors provide near-perfect event-by-event discrimination against otherwise
dominant electron-recoil backgrounds

© lonization Yield (ionization
energy per unit recoil
energy) depends strongly
on type of recoil

© Most background sources
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© WIMPs (and neutrons) :., . fes " "5 d
produce nuclear recoils [

© Phonons from interaction !{}_5.: 616 Neutrons (external source)
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are optical phonons, these
phonons decay into high
energy acoustic phonons

© Phonon propagation
velocity is a strong function
of phonon frequency.

© Surface impurities in Si or
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impurities is several orders
higher compared to the
bulk closed-shell impurities

© Surface events produce
lower-frequency phonons in
much shorter time

© Faster phonons result in a
shorter risetime of the 12
phonon pulse

© Risetime helps eliminate
the otherwise troublesome 10
background surface events

© Nuclear recoil is identified
with both yield and risetime 0
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CDMS Il SUF RUN

« Stanford Underground Facility (SUF) at 17 mwe of rock

« Active scintillator + gamma and neutron shielding + radio-pure inner volume
« Event-by-event nuclear recoil discrimination by using 6 ZIP detectors

* 4 Ge (2509 each) and 2 Si (100g each) detectors

e 3V data set, 93 real days, 67 live days, and a total of 4.7 million events

* 6V data set, 74 real days, 52 live days, under analysis

Active Muon Veto Detectors
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Neutron Multiple Scatters

Non-
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« 2 triple-scatter (filled circles)
and 1 non-nearest-neighbor
double-scatter (X) NR
candidates 5-100 keV

— Ignore nearest-neighbor
doubles because
possible contamination
by surface electrons

« Expect ~16 single-scatter
neutrons per 3 multiple
scatters

— Implies many (or all) of
20 single-scatter WIMP
candidates are neutrons

Resulting Experimental Upper Limits

90% CL upper limits assuming
standard halo, A2 scaling
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 Calculate allowed region
using extension of
“Feldman Cousins” method
— Constrain neutron
background based on 3
“gold-plated” neutron
multiples, 2 Si neutron
singles (considering
possibility of background)
« Limits slightly worse than
expected sensitivity
(dashes)

e Exclude new parameter
space for WIMP masses
below 20 GeV

e Exclude a few interesting
supersymmetry models

» Exclude DAMA most likely
point (x) at 99.8% CL

CDMS Il at Soudan

» Go to deep site: Soudan mine, Minnesota, 713 m (2090 mwe) under surface

» Muon flux reduced by > factor 30,000

» Neutron background reduced from ~1 / kg / day to ~1 / kg / year
» With current rejection and radioactive background rates, will improve sensitivity

x100

— Expected sensitivity ~ 0.07 evt/kg/day within two months
— Final expected sensitivity ~ 0.01 evt/kg/day

12 detectors in 2 towers of 6, 1.5 kg of Ge, 0.6 kg of Si

« 18 more detectors in fabrication, 4 kg of Ge, 1.5 kg of Si

Assembled entire shield and veto
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Icebox can take 7 towers

System test of DAQ and warm electronics performed at Soudan
Detectors are at 40mK, low-background run commissioning is in progress

Muon-veto paddles encasing
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