

Measurement of Wgproduction at CDF Naho Tanimoto, Okayama University, Japan For the CDF Collaboration

Abstract

Diboson production provides a sensitive test of the Standard Model. We present an analysis of W+gevents, using 128 pb⁻¹ of Run 2 CDF data, produced in $p\overline{p}$ collisions at the Tevatron with $\ddot{\mathbf{0}}$ s=1.96TeV. Both electron and muon channels of the W boson are analyzed and compared to the Standard Model expectation.

1. Introduction

The Standard Model γ , W and Z gauge bosons are fundamental particles having no internal structure. The gauge symmetry for W and Z bosons severely constrains their couplings to each other. Measuring processes that are sensitive to these couplings provides a test of the gauge theory.

At a $p\overline{p}$ collider, these processes can produce a W and γ in the final state.

The s-channel diagram contains the trilinear gauge couplings or vector boson self couplings, $\Delta\kappa$ and λ

In the Standard Model, the trilinear gauge couplings, $\Delta \kappa = \kappa - 1$ and λ , are 0. If there is any deviation from the Standard Model, W γ cross section will be enhanced and the kinematical distributions are sensitive to anomalous couplings.

Theoretical prediction : s(Wg)⁻Br(W®ln)=18.6 ± 1.3 (sys.) [pb] (E_T(g) > 7 GeV and DR(lepton, g) > 0.7)

2. Analysis

Event Selection

W selection

- Isolated electron with E_T>25GeV and $|\eta|$ <1.1
- Isolated muon with P_T > 20 GeV and $|\eta|$ <0.6
- Large Missing E_T>25(20 for μ) GeV
- γ selection
- Isolated photon with $E_T(\gamma) > 7GeV$ and $|\eta| < 1.1$
- Quality cuts to reject π^0 background
- $W\gamma$ selection
- Separation between lepton and photon, $\Delta R(I,\gamma) > 0.7$

Backgrounds to Wgevents QCD background : jet fakes to photon (67%) $Z\gamma, Z \rightarrow II$: one lepton is misidentified (29%) $W\gamma, W \rightarrow \tau\nu, \tau \rightarrow I\nu\overline{\nu}$ (4%)

 $r{\-}\varphi$ view of a $W\gamma$ candidate

1000-

 $\rightarrow e^+ e^- MC$

3. CDF Run2 Preliminary Results

The number of expected and observed events of $W\gamma$ combining both electron and muon channels using integrated luminosity 128 pb⁻¹. The major source of background is the misidentification of a jet as a photon.

Standard Model Wy signal	98.9 ± 1.5 (stat.) ± 5.6 (sys.)
QCD background	28.1 ± 0.1 (stat.) ± 9.4 (sys.)
Zγ background	12.0 ± 0.34 (stat.) ± 0.69 (sys.)
Wγ, W \rightarrow τν background	1.74 ± 0.16 (stat.) ± 0.14 (sys.)
Signal + Background	140.7 ± 1.6 (stat.) ± 11.0 (sys.) ± 6.8(lum.)
Data	133

 $s(Wg)^{T}Br(W \otimes In) = 17.2 \pm 2.2 \text{ (stat.)} \pm 2.0 \text{ (sys.)} \pm 1.1 \text{ (lum.)} \text{ [pb]}$ $s(Wg)^{T}Br(W \otimes In) = 18.0 \pm 3.3 \text{ (stat.)} \pm 2.5 \text{ (sys.)} \pm 1.2 \text{ (lum.)} \text{ [pb]}$ $s(Wg)^{T}Br(W \otimes In) = 16.1 \pm 3.4 \text{ (stat.)} \pm 1.7 \text{ (sys.)} \pm 1.1 \text{ (lum.)} \text{ [pb]}$ $(E_{T}(g) > 7 \text{ GeV and } DR(\text{lepton},g) > 0.7 \text{)}$

4. Conclusion

We measured W γ production cross section in E_T(γ) > 7 GeV and Δ R(lepton, γ) > 0.7 both electron and muon channels, and found it consistent with the Standard Model prediction.

Kinematical distributions of photon $E_T(up, left)$, $\Delta R(lepton, \gamma)$ (up, right), cluster transverse mass(down, right) and cluster transverse mass versus transverse mass(down, right)