

• Coverage up to **h**=±2. • Three layers: one inside (A), two outside (B, C) of the toroid magnet • Consists of scintillators and drift tubes

Forward Mini-drift

New electronics, Trigger, DAQ

Visual Light Photon Counter

... and its response to 0, 1, 2, 3 pe:

A measurement of the Z - > mm cross-section is made using an $\mathbf{L}dt$ of 116.8 pb⁻¹

Selection criteria:

* Require 2 oppositely charged loose muons matched to central tracks with $p_T > 15$ GeV * Timing, distance of closest approach, and isolation cuts to remove background from: - cosmics - bb decays into muons

* Candidate events must fire di-muon trigger

* Muon candidates must be within geometrical acceptance of muon chambers:

- |**h**| < 1.8

- if $|\mathbf{h}| < 1.25$, muon candidate must not be in **f** $\hat{\mathbf{I}}$ [4.25, 5.15]

This yields 6126 Z -> mmcandidates

l background

DÆ detector provides unique opportunities for studying Electroweak Physics

General features of W and Z production

-10 -5 0

Why do we care about W and Z Production * Test consistency of the SM couplings * Constrain proton PDF's * Understand higher-order QCD corrections * M_w constrains mass of Higgs

Why do we really care about W and Z Production * Benchmarks our level of understanding of the experiment Efficiencies, Backgrounds, Luminosity We use these signals to tune up triggers & algorithms * If experimental and theoretical uncertainties are small, W & Z can be used to measure luminosity, normalize to other measurements, at least provides a monitor * The study of W & Z production is preliminary to the grander goals of Run II - W boson mass and other precision EWK measurements - Top Quark Studies - (W or Z) + Higgs

A measurement of the W - > \mathbf{m} cross-section is made using an $\mathbf{d}\mathbf{d}\mathbf{t}$ of 17.3 pb⁻¹ (Data sample used in this analysis was collected between September '02 and January '03) Selection criteria:

* Require an only one good quality muon matched to a central track with $p_T > 20$ GeV * Muon candidate must be in the fiducial acceptance defined as:

- |**h**| < 1.6

- if $ \mathbf{h} < 1.1$, muon candidate must not be in fÎ [4.25, 5.15]	Estimated backgro
Events must pass single high-p _T muon trigger	bb : $f = 0.058$
Missing E _T must be above 20 GeV	Z -> mm f = 0.090
Isolation and timing cuts were applied to remove background from cosmics and bb	W - > tn : f = 0.036

 $s \cdot Br(W - > m) = 3226 \pm 128 (stat.) \pm 100 (syst.) \pm 323 (luminosity) pb$

DØ and CDF RunII Preliminary Results on W and Z cross-sections

