Reactor Neutrino Measurement of []13

K.M. Heeger, S.J. Freedman, K.-B. Luk, Lawrence Berkeley National Laboratory

http://theta13.lbl.gov/

Measuring 🗓₁₃ at a Reactor

A novel reactor antineutrino experiment

 $P_{ee} = 1 \cdot \sin^{2} 2 \cdot \int_{\tan^{2} \theta}^{\theta} e^{\theta} = 10^{2}$ $P_{ee} = 1 \cdot \sin^{2} 2 \cdot \int_{3}^{2} \sin^{2} \frac{\Box m_{31}^{2} L}{4E_{II}} + \frac{\Box m_{21}^{2} L}{4E_{II}} \cos^{4} \cdot \int_{3}^{2} \sin^{2} 2 \cdot \int_{2}^{2} e^{\theta} e^{\theta} = 10^{2} \cdot \int_{3}^{4} e^{\theta} =$

• 2 or 3 antineutrino detectors

· variable baseline

With multiple detectors and a variable baseline a next-generation reactor neutrino experiment has the opportunity to discover subdominant neutrino oscillations associated with the atmospheric mass splitting and make a measurement of \prod_{n} .

A reactor neutrino oscillation experiment

- is a disappearance experiment
- searches for deviations from 1/r² law in relative ①, flux and spectral shape between detectors
- uses a baseline of
 ☐(1 km²)
- encounters no matter effects

Understanding the U_{MNS} Neutrino Mixing Matrix

Results of the SNO solar neutrino experiment, the KamLAND reactor antineutrino experiment, and the evidence from the Super-Kamiokande atmospheric neutrino experiment have established the massive nature of neutrinos and point to a novel phenomenon called *neutrino oscillations*. In the framework of neutrino oscillations the mass and flavor eigenstates of 3 active species are related through the U_{NNS} matrix.

Past, Present and Future Experiments

A variety of experiments are needed to determine all elements of the neutrino mixing matrix. The angle \mathbb{D}_{l3} associated with the subdominant oscillation is still undetermined!

Future reactor neutrino experiments with multiple detectors have the opportunity to measure the last undetermined mixing angle \mathbb{I}_{13} . Knowing \mathbb{I}_{13} will be critical for establishing the feasibility of CP violation searches in the lepton sector.

Understanding the Role of \square_{13} in Neutrino Oscillation Physics

- Why are the mixing angles large, maximal, and small?
- Is there CP, T, or CPT violation in the lepton sector?
- Is there a connection between the lepton and the baryon sector?
- Understanding the role of neutrinos in the early Universe:

Can leptogenesis explain the baryon asymmetry?

Towards a Precision Reactor Neutrino Oscillation Experiment

Results from past reactor neutrino experiments (statistical error) compared to the expected statistical sensitivity of a next-generation, 2-detector reactor oscillation experiment. The expected sensitivity is $\sin^2 2 \square_{l3} \sim 0.01$ -0.02.

Diablo Canyon, California - An Ideal Site?

Modular and movable detectors with a volume of \sim 100 tons combined with an active muon veto allow a precision measurement of \square_{13} A variable baseline is critical for controlling systematics and demonstrating the subdominant oscillation effect associated with \square_{13} .