Yuriy Groysman, Lawrence Berkeley National Laboratory and University of California at Berkeley Charmless Vector-Vector B Meson Decays

Why we Study $B \rightarrow \rho \rho$ Decays

Chamless B meson decays provide an opportunity to measure the weakinteraction phases arising from the elements of the CKM quark-mixing matrix.

Decays $B \rightarrow \rho\rho$ are expected to proceed through tree-level $b \rightarrow u$ transitions and *CKM*-suppressed $b \rightarrow d$ penguins. Time-dependent *CP*-violating asymmetries in $B \rightarrow \rho\rho$ ($\pi\pi$, $\rho\pi$) decays are related to CKM angle $\alpha \equiv \arg[-V_{ul}V_{b}^{*}/V_{ud}V_{ub}^{*}]$.

The presence of penguins and both *CP*-even (*S*- and *D*-wave) and *CP*-odd (*P*-wave) components in the decay amplitude complicates the measurement of α . Isospin relations among the three $B \rightarrow \rho\rho$ modes may reduce the uncertainties in the measurement of α due to penguin contributions. The experimental limit on $B \rightarrow \rho^{\rho}\rho^{0}$ and the measurement of $B \rightarrow \rho^{+}\rho^{0}$ indicate that the penguin pollution can be constrained in $B \rightarrow \rho\rho$ modes better than in analogous $B \rightarrow \pi\pi$ modes. Polarization measurements in $B \rightarrow \rho\rho$ presented here provide evidence that the *CP*-even longitudinal component dominates, and this also simplifies *CP*-violation studies.

B → Vector-Vector Angular Formalism

The angular distribution of $B \rightarrow VV$ final state is in general a combination of S-, P- and D-wave contributions. We define helicity angles θ_I , θ_2 of ρ decays and angle φ between the decay planes of the two vector-particle decays.

We integrate over angle φ between the two decay planes (there are no acceptance effects in azimuthal direction). The differential decay width is then defined as:

$$\frac{d^2 r}{d \cos \theta_1 d \cos \theta_2} = \frac{9}{4} \left\{ \frac{1}{4} (1 - f_L) \sin^2 \theta_1 \sin^2 \theta_2 + f_L \cos^2 \theta_1 \cos^2 \theta_2 \right\}$$

The longitudinal fraction $f_L = \Gamma_L / \Gamma$ is the fraction of the longitudinal over the total decay width.

Angular acceptance distribution $G(\theta_1, \theta_2)$ for $B^0 \rightarrow \rho^+ \rho^-$ signal

Distribution in 2D of the cosine angles in $B \rightarrow VV$ decays for an

New results: $B^0 \rightarrow \rho^+ \rho^-$ (preliminary)

Reconstruction efficiency $\varepsilon = 3.9^{+0.9}_{-0.6}$ % Signal event yield $n_{sig} = 93^{+23}_{-21} \pm 9$.

Statistical significance of the $B^0 \rightarrow \rho^+ \rho^$ measurement is 5.9 σ , and this is the first observation of this *B* decay mode with a significance greater than 3σ . The decay amplitude is predominantly longitudinal.

The projections of the fit input variables are shown below. The projections are made after a requirement on the signal-to-background probability ratio. The histograms show data with about 40-60% of signal retained, the lines show the PDF projections from the full sample.

Summary of Results

${old B}$ decay mode	$\mathcal{B}(\times 10^{-6})$	J _L
$\rho^+ \rho^-$	27 +7+5	$0.99 \stackrel{+0.05}{_{-0.07}} \pm 0.03$
$\rho^+ \rho^0$	$23^{+6}_{-5}\pm6$	$0.97 \substack{+0.03 \\ -0.07} \pm 0.04$
e ^p e ^p	< 2.1 (20% CL)	-
* preliminary result		

Analysis Methods

We fully reconstruct all $B \rightarrow \rho\rho$ final states, where the masses of $\rho^+(\pi^+\pi^0)$, $\rho^0(\pi^+\pi^-)$ and $\pi^0(\gamma\gamma)$ candidates are required to lie within experimentally defined tolerances of the nominal values. We identify *B* candidates using the beam energysubstituted mass $m_{es} = [(s/2 + \bar{p}_r, \bar{p}_s)^2 / E_i^2 - \bar{p}_s^2]^2$ and energy difference $\Delta E = (E_r E_s - \bar{p}_r, \bar{p}_s - s/2)/\sqrt{s}$. To reject the dominant continuum background, we require $|\cos \theta_T| < 0.8$, where θ_T is the "thrust angle". We also construct an 11-variable Fisher discriminant (\mathcal{F}) to describe the topology of the event.

We use an unbinned, extended maximum-likelihood fit to extract the signal yield and angular polarization. The extended likelihood for a sample of events is:

 $\mathcal{L} = \exp(-\sum_{j} n_{i}) \prod_{j} \exp\left(\frac{1}{N_{i}} \ln(\sum_{j} n_{i} \mathcal{P}_{i}(\vec{x}_{j}; \vec{\alpha}))\right)$

The seven fit input variables x_j are m_{ES} , ΔE , \mathcal{F} , invariant masses of ρ candidates, and corresponding helicity angles θ_1 and θ_2 .

The PDF parameters α are extracted from MC simulation and on-resonance $m_{ES} - \Delta E$ sidebands.

About 5% of the events in the final sample are expected from other B decays. This background is explicitly accounted for in the fit.

The event yields n_j and polarization f_L are obtained by minimizing the quantity $\chi^2 = -2 \ln L$. We quote statistical errors corresponding to a unit increase in χ^2 .

arbitrary polarization f_L

 $B^{\theta} \rightarrow \rho^{\theta} \rho^{\theta}$: Reconstruction efficiency $\varepsilon = 17.6 \pm 1.5\%$. Signal event yield $n_{sig} = 9.7^{+11.9}_{-9.4} \pm 2.0$.

The 90% confidence upper limit on the ratio of the longitudinal amplitudes in decays is

$$\frac{\mathcal{B}(B^0 \rightarrow \rho^0 \rho^0) \times f_L(B^0 \rightarrow \rho^0 \rho^0)}{\mathcal{B}(B^* \rightarrow \rho^0 \rho^*) \times f_L(B^* \rightarrow \rho^0 \rho^*)} < 0.10$$

 BaBar Collaboration, B. Aubert *et al*, BABAR-PUB-03/018, hep-ex/0307026, submitted to Phys. Rev. Lett.