

Study of Di-electron + Photon Production at CDF **Heather Gerberich, Duke University** for the CDF Collaboration

Motivation

- This is a signature-based search for an eey final state with a resonance in the ey channel
- eey signature has low background
- We search for the production of **excited** or **exotic** electrons (e^{*}) in the following reaction:

Excited Electron Model

- The production of excited states of quarks and leptons is expected in many compositeness models
- We use a model for excited fermions that is described by their coupling to quarks and leptons through contact interactions (U. Baur, M. Spira, and P. M. Zerwas, Phys Rev D 42, 3)
- Cross section depends on two parameters: e* mass and compositeness scale (Λ)
- $\bullet \rightarrow$ Currently no mass limits published for this particular excited electron model

600

800 Μ_{eγ} (GeV)

400

0

200

Simulated e* Signal

- PYTHIA with a GEANT based CDF detector simulation is used to study e* production
- An e* signal would manifest itself as a narrow resonance peak in the ey invariant mass
- The mass width is dominated by detector resolution

Dataset and Signal Selection Central Outer Tracker • 125 pb⁻¹ of data taken with the high E_{T} electron trigger from March 2002 • Electromagnetic through May 2003 Calorimeter • Hadronic Calorimeter • One central ($|\eta| < 1$) electron are used to identify central electrons and • Second electron and photon can be photons central or plug ($1.2 < |\eta| < 2.8$) η =1.0 2.0 .300 • Electron and photon $E_T > 25 \text{ GeV}$ SOLENOID

