LHC - the world's most powerful particle accelerator Particle accelerators are the machines that make all this research possible. Over the years, CERN has built up the world's most versatile complex of particle accelerators. In 2007, this is set to be joined by the most ambitious accelerator to date, the Large Hadron Collider (LHC). The LHC will enable the study of proton-proton and ion-ion collisions. CERN's existing chain of injectors (LINAC, booster, PS, SPS) will provide the necessary particles. ## Performance parameters | Energy | TeV | 7.0 | |---------------------------------|----------------------------------|------------------| | Dipole field | Т | 8.3 | | Coil aperture | mm | 56 | | Distance between apertures | mm | 194 | | Luminosity | cm ⁻² s ⁻¹ | 10 ³⁴ | | Beam-beam parameter | | 0.0036 | | Injection energy | GeV | 450 | | Circulating current / beam | mA | 582 | | Bunch spacing | ns | 25 | | Bunches per beam | | 2808 | | Particles per bunch | | 10 ¹¹ | | Stored beam energy | MJ | 366 | | Normalized transverse emittance | μm.rad | 3.75 | | r.m.s. bunch length | m | 0.077 | | β-values at I.P. in collision | m | 0.55 | | Full crossing angle | μrad | 285 | | Vacuum beam lifetime | h | 84 | | Luminosity lifetime | h | 13.9 | | Energy loss per turn | keV | 7 | | Critical photon energy | eV | 44.1 | | Total radiated power per beam | kW | 3.8 | (General LHC parameters version 3.0. Nominal proton performance parameters version 3.0) The LHC superconducting magnets will generate the highest magnetic fields ever reached in an accelerator of this scale. The dipoles and quadrupoles will be interconnected so as to form a continuous cryogenic "pipe" installed in the 27 km-long LHC tunnel with a separate cryogenic distribution line. The superconducting RF accelerating cavities, along with the beam cleaning and beam dump systems, will complete the machine.