Standard Model: Getting There and Beyond

Bogdan Dobrescu

Theoretical Physics Department
Fermilab

High Energy Physics has established that all known natural phenomena can be described by a local quantum field theory which is invariant under:

- 3+1 dimensional Lorentz transformations, SO(3,1), and translations.
- ullet $SU(3)_C imes SU(2)_W imes U(1)_Y$ gauge transformations
- ⇒ all elementary particles belong to certain representations of the Lorentz and gauge groups:

Spin-1 bosons

$$\left\{ egin{array}{ll} G^{\mu}: & (8,1,\ 0) \ W^{\mu}: & (1,3,\ 0) \ B^{\mu}: & (1,1,\ 0) \end{array}
ight.$$

Spin-1/2 fermions

$$\left\{ egin{array}{lll} G^{\mu}:&(8,1,\;\;0) \ W^{\mu}:&(1,3,\;\;0) \ B^{\mu}:&(1,1,\;\;0) \end{array}
ight. & \left\{ egin{array}{lll} q_L:&(3,2,\;\;+1/6) \ u_R:&(3,1,\;\;+2/3) \ d_R:&(3,1,\;\;-1/3) \ l_L:&(1,2,\;\;-1/2) \ e_R:&(1,1,\;\;-1) \end{array}
ight.$$

Parameters of a quantum field theory:

- masses (dimensionfull)
- couplings (dimensionless, $c = \hbar = 1$)

Experiments measure parameters

- or discover new particles
- or discover deviations from quantum field theory.

Examples of measurements:

- $\star \sin^2 \theta_W$ at NuTeV
- \star CP asymmetries in B_s decays at BTeV
- $\star \theta_{13}$ at MINOS
- $\star Br(K^+ \to \pi^+ \nu \overline{\nu})$ at CKM
- * ...

Examples of discoveries of new particles:

- **★** Top quark at CDF/D0 (Run I)
- * Tau neutrino at DONUT
- * Next bump in $\sigma(p\bar{p}\to\mu^+\mu^-X)$ in Run II, or in $\sigma(e^+e^-\to\mu^+\mu^-)$ at a future linear collider

Complications:

quantum field theory at strong coupling

Example:

BaBar discovery of a narrow resonance at 2.317 GeV in the $D_s^+\pi^0$ final state \Longrightarrow New particle! (April 12, 2003)

Heavy quark effective theory + model of chiral symmetry breaking in QCD (Bardeen, Eichten, Hill, hep-ph/0305049 - May 5): $c\bar{s}$ bound state - not a new elementary particle.

 \Rightarrow there must also exist an excited D_s^{*+} state of 2.46 GeV ... discovered by CLEO (May 12, 2003).

Fundamental parameters

Mass scales:

- Electroweak scale: $\langle H \rangle \approx 174$ GeV (Vacuum expectation value which breaks the $SU(2)_W \times U(1)_Y$ symmetry; determines M_W, M_Z up to a gauge coupling)
- Planck scale: $M_P \approx 2 \times 10^{19}~{
 m GeV}$ (determines the strength of the gravitational interactions)
- Cosmological constant: $\approx 10^{-3}$ eV (sets the acceleration of the expansion of the Universe)

Gauge couplings:

- $g_s \longrightarrow \Lambda_{
 m QCD} pprox 100$ MeV
- $ullet \ g,g' \longrightarrow lpha_{
 m em}\,,\; \sin^2 heta_W$

Fermion couplings to $\langle H \rangle$:

- $\lambda_u^{ij}, \lambda_d^{ij} \longrightarrow$ quark masses and CKM elements
- λ_e^{ij} \longrightarrow charged lepton masses

QCD θ parameter:

• coefficient of $G\tilde{G}$ in the Lagrangian: $\theta < 10^{-9}$ (leads to CP-violating quark masses; measured by the neutron electric dipole moment)

Neutrino masses and mixings:

• Either couplings of new particles (ν_R) to $\langle H \rangle$, or a new mass scale, $\frac{C_{ij}}{M_{\rm new}}(L^iH)(L^jH)$, or both?

Higher-Dimensional Operators

Suppressed by some mass scales $\gtrsim 1$ TeV If non-zero coefficients \Rightarrow "New Physics"

EXAMPLES:

 $\bullet \ \ \frac{C_1}{M_1^2} \left(\overline{l}_L^2 \gamma^\alpha l_L^2 \right) \left(\overline{q}_L^1 \gamma_\alpha q_L^1 \right) = \frac{C_1}{M_1^2} \left(\overline{\nu}_L^\mu \gamma^\alpha \nu_L^\mu \right) \left(\overline{u}_L \gamma_\alpha u_L + \overline{d}_L \gamma_\alpha d_L \right) + \dots$

NuTeV measured a combination of $rac{C_1}{M_1^2}$ and $\sin^2 heta_W$.

$$\begin{array}{l} \bullet \ \ \frac{C_2}{M_2^2} \left(\overline{q}_L^3 \gamma^\alpha q_L^2 \right) \left(\overline{q}_L^3 \gamma_\alpha q_L^2 \right) = \frac{C_2}{M_2^2} \left(\overline{b}_L \gamma^\alpha s_L \right) \left(\overline{b}_L \gamma_\alpha s_L \right) + \dots \\ \\ \text{induces } B_s^0 \text{-} \overline{B}_s^0 \text{ mixing; to be measured by D0, CDF.} \end{array}$$

•
$$rac{C_3}{M_3^2}ig(\langle H
angle\sigma^iW^i_lpha\langle H
angleig)ig(\langle H
angle\sigma^i'W^{lpha i'}\langle H
angleig)}{
m shifts}\ M_W/M_Z$$
, changes the electroweak fits.

• . . .

Vector-like quarks

 q_L , q_R : same gauge charges

Predicted in many models:

- "Top-quark seesaw" model (Dobrescu, Hill, 1997; ...)
 - → Higgs doublet is composite
- "Little Higgs" models (Arkani-Hamed et al, 2002)
 - → no quadratic divergences at 1-loop
- "Beautiful mirrors" (Choudhury, Tait, Wagner, 2001)
 - ightarrow explains $A_{
 m FB}^b$;
 - \rightarrow signal in Run II: $b' \rightarrow bZ$ for $m_{b'} < 300$ GeV

New neutral gauge bosons (Z')

Example:
$$SU(3)_C imes SU(2)_W imes U(1)_Y imes U(1)_{B-L}$$
 (Appelquist, Dobrescu, Hopper, hep-ph/0212073)

 Z_{B-L} does not mix at tree level with the Z

Run I: $M_{Z_{B-L}} > 480$ GeV (coupling $\approx e$) Could be discovered in Run II.

 \longrightarrow Gauge anomaly cancellation would then provide information about ν sector.

More dimensions

4D flat spacetime \perp one dimension of size πR :

Boundary conditions:
$$\frac{\partial}{\partial y}\phi(x,0) = \frac{\partial}{\partial y}\phi(x,\pi R) = 0$$

$$\implies \phi(x,y) = rac{1}{\sqrt{\pi R}} igg[\phi^0(x) + \sqrt{2} \sum\limits_{j \geq 1} \phi^j(x) \cos igg[rac{jy}{R} igg] igg]$$

Kaluza-Klein modes, $\phi^j(x)$: particles with momentum in extra dimensions

$$\Rightarrow$$
 massive particles in 4D: $m_j^2 = m_0^2 + rac{j^2}{R^2}$

Fermions in a compact dimension

Lorentz group in 5D \Rightarrow vector-like fermions:

$$\chi = \chi_L + \chi_R$$

Chiral boundary conditions:

$$\chi_L(x^\mu,0) \; = \; \chi_L(x^\mu,\pi R) = 0 \ rac{\partial}{\partial y} \chi_R(x^\mu,0) \; = \; rac{\partial}{\partial y} \chi_R(x^\mu,\pi R) = 0 \ \$$

Kaluza-Klein decomposition:

$$\chi(x,y) = rac{1}{\sqrt{\pi R}} \Big\{ \chi_R^0 + \sqrt{2} \sum\limits_{j \geq 1} \left[\chi_R^j \cos\left(rac{\pi j y}{L}
ight) + \chi_L^j \sin\left(rac{\pi j y}{L}
ight)
ight] \Big\}$$

Universal Extra Dimensions

T. Appelquist, H.-C. Cheng, B. Dobrescu, Phys.Rev.D64 (2001)

<u>All</u> Standard Model particles propagate in $D \geq 5$

Momentum conservation \Rightarrow KK parity is conserved

- ullet Bounds from one-loop shifts in M_W/M_Z and other observables: $rac{1}{R} \gtrsim 300~{
 m GeV}$
- Pair production of Kaluza-Klein modes at colliders: could be discovered soon!

(Cheng, Matchev, Schmaltz, hep-ph/0205314)

Six-Dimensional Standard Model

work with T. Appelquist, G. Burdman, E. Ponton, E. Poppitz, H.-U. Yee

D=6 (two universal extra dimensions) is special...

- ullet Global $SU(2)_W$ anomaly cancellation requires 3 mod 3 generations.
- Gravitational anomaly cancellation in 6D requires one right-handed neutrino per generation.
- ullet 6D Lorentz symmetry allows u masses only of the Dirac type.

Compactification of two extra dimensions

Square torus of radius R:

6D Lorentz symmetry broken by compactification:

$$SO(5,1) \rightarrow SO(3,1) \times Z_8$$

Dominant baryon-number violating processes:

$$p
ightarrow e^- \pi^+ \pi^+
u
u$$
 and $n
ightarrow e^- \pi^+
u
u$

$$au_p pprox rac{10^{35} {
m yr}}{C_{17}^2} iggl[rac{(4\pi)^{-7} 10^{-4}}{\Phi_5 F(\pi\pi)} iggr] iggl[rac{1/R}{0.5 {
m ~TeV}} iggr]^{12} iggl[rac{RM_s}{5} iggr]^{22}$$

Long-live the proton!

Conclusions

Bogdan Dobrescu (Fermilab)