Full Detector Simulation with Gismo

Ron Cassell Oct. 25, 2000 LCWS2000 at FNAL

Overview

- ? Why do full simulation
- ? Gismo features
- ? Current detectors
- ? Data availability
- ? Summary

LCD Software Road Map

Full Simulation: Tool for

- **? Detector design and comparisons**
- **Reconstruction development**
- ? Realistic parameters for fast simulation
- ? Beam background studies and overlays

Full Simulation

- ? Although many analyses can be performed with fast, parameterized simulations, these cannot be the final word.
 - ? Most often, complications due to pattern recognition (e.g. clustering and track finding in complex events) are completely ignored.
 - ? Detector effects (cracks, edges, inefficiencies, field inhomogeneities) and physics effects (dE/dx, production of secondaries, decays in flight, etc.) are not simulated.
- ? Essential for development of realistic reconstruction algorithms and physics analyses!

GI SMO/GI SMOAPPS

? Full featured simulation

- Object-Oriented C++
- AIX, Linux, OSF1, SunOS, NT platform support
- CVS storage
- Prod/Dev/Test of individual facilities with DEC
- Complex geometries, XML definitions
- EGS(EM) + Gheisha(hadronic) (1 MEV cutoff)

GI SMO/GI SMOAPPS

? Digitization

- Tracking: actual position at active layer
- Calorimeters: total energy per channel
- Full MC record for each digitization

Each particle's contribution is separately included for each calorimeter hit

- ? Generator input from /HEPEVT/ via FNAL STDHEP I/O package
- ? SIO output

Beam Background Overlays

- Take output from full beam simulation (from IR/backgrounds group)
- Feed into full Gismo simulation
- Build library of simulated background bunches
- Overlay backgrounds on signal events at start of reconstruction

Adjust timing of hits (for TPC e.g.)

Add energy in calorimeter cells

Allows to change #bunches/train, bunch timing

Current detector designs

S2

L2

Beam pipe	.075 cm Be + .01 cm Ti shield 1 cm inner radius	.075 cm Be + .01 cm Ti shield 1 cm inner radius
Vertex	5 layers .01 cm Si r = 1.2 – 6.0 cm	5 layers .01 cm Si r = 1.2 - 6.0 cm
Tracker	3 doublets Si, r = 14,15 42,43 70,71 5 Si discs z = 31, 61, 91, 121, 149 cm	144 layer TPC, r = 52-190 cm 5 Si discs z = 30-270 cm 1 layer Si, r = 48 cm
EM	50 layers W/Si, barrel r = 78-103 cm	40 layers Pb/Scint, barrel r = 196-220
Calorimeter	EC z = 152-178 cm, mean cell width = 1.5 cm, #channels = $4X10^{**}6$	cm, EC z = 297-322 cm, mean cell width = 3.4 cm, #chans = 3.4X10**6
Had	38 layers Cu/Scint, barrel r = 188-	120 layers Pb/Scint, barrel r = 233-365
Calorimeter	287 cm, EC z = 189-388 cm, mean cell width = 3.5 cm, #chans = 3X10**6	cm, EC z = 334-446 cm, mean cell width = 13 cm, #chans = 1.1X10**6
Muon	10 layers Fe, barrel r = 300-420 cm,	24 layers Fe, barrel r = 453-645 cm,
Calorimeter	EC z = 298-318 cm	EC z = 447-669 cm
Luminosity Monitor	50 layers W/Si, z = 151-176 cm	50 layers W/Si, z = 300-325 cm
Coil	29 cm Al, r = 113-182 cm B = 6T	29 cm Al, r = 378-448 cm B = 3T

Current detector coverage

		coverage		Theta	Phi
		theta (mr)	cos(theta)	segment*	segment*
S2	em Had	135 67	.991 .998	10mr 10mr	20mr 20mr
	LUM VTX	34 192	.999 .982	10mr	20mr
	Tracking	119	.993		
L2	EM	90	.996	10mr	20mr
	HAD LUM	66 15	.998 .9999	30mr 10mr	60mr 20mr
	VTX Tracking	192 114	.982 .994		

L2

R-Z plots of hit positions from active elements of the two current designs

fisheye view

S2

L2

```
<!DOCTYPE lcdparm SYSTEM "detParms.dtd" >
<!--
      Following describes the standard large detector, version 2
                                                                         -->
K!---
CVS $Header:
/afs/slac.stanford.edu/g/nld/cvsroot/lcd/dat/large/2/largeParms2.xml,v 1.0
2000/1/21 16:00:00 jrb Exp $
detector ID:
type L2
major 2
minor 0
end;
<lcdparm>
  <global file="largeParms2.xml" />
  <physical detector topology="large" id = "L2" >
   <volume id="EM BARREL" rad len cm="1.4" inter len cm="0.03" >
      <tube>
        <barrel dimensions inner r = "196.0" outer z = "322.0" />
        <lavering n="40">
           <slice material = "Pb" width = "0.4" />
          <slice material = "Tyvek" width = "0.05" />
          <slice material = "Polystyrene" width = "0.1" sensitive = "yes" />
          <slice material = "Tyvek" width = "0.05" />
        </layering>
<!-- Took out owall; has been replaced with EM BARREL ELECTRONICS below -->
        <seqmentation theta = "300" phi = "300" />
     </tube>
     <calorimeter tupe = "em" />
   </volume>
<!-- electronics. Slight gap (.15 cm) between it and EM barrel proper -->
   <volume id="EM BARREL ELECTRONICS">
      <tube>
        outer_z = "322" />
        <lauering>
          <slice material = "G10" width = "6.85" /> < !-- ??? -->
        </layering>
      </tube>
       <support type = "electronics" />
   </volume>
<!-- Support structures for barrel: inner wall and endrings -->
   <volume id="EM BARREL INNER WALL" >
       <tube>
        <barrel dimensions inner r = "193"</pre>
                                               outer z = "325" />
        <layering>
          <slice material = "Al" width = "3" />
         </layering>
       </tube>
```

```
<support />
    </volume>
    <volume id="EM BARREL ENDRING">
       <disk>
         <disk dimensions inner r = "196" inner z = "322" outer r = "227" />
         <lauering>
           <slice material = "Al" width = "3" />
         </lauering>
       </disk>
       <support />
    </volume>
    <volume id = "EM ENDCAP" rad len cm = "1.4" inter len cm = "0.03">
       <disk reflected = "ues">
         <disk dimensions inner r = "29.0" inner z = "297.5"</pre>
                         outer r = "187.0" />
         <layering n="40">
           <slice material = "Pb" width = "0.4" />
           <slice material = "Tyvek" width = "0.05" />
           <slice material = "Polystyrene" width = "0.1" sensitive = "yes" />
           <slice material = "Tyvek" width = "0.05" />
         </lauering>
         <seqmentation theta = "300" phi = "300" /> <!-- ??? -->
       </disk>
       <calorimeter type = "em" />
    </volume>
<!-- electronics. Slight gap (.15 cm) between it and EM endcap proper -->
    <volume id="EM ENDCAP ELECTRONICS">
       <disk>
         <disk dimensions inner r = "29.0" inner z = "321.65"</pre>
                          outer r = "187" />
         <lauering>
           <slice material = "G10" width = "6.35" /> < !-- ??? -->
         </layering>
       </disk>
       <support type = "electronics" />
    </volume>
    <!-- inner support disk for EM ENDCAP -->
    <volume id="EM ENDCAP INNER DISK">
       (disk)
         <disk dimensions inner r = "25" inner z = "295" outer r = "188" />
         <lauering>
           <slice material = "Al" width = "2.5" />
         </lauering>
       </disk>
       <support />
    </volume>
    <volume id = "HAD BARREL" inter len cm = "0.05" >
      <tube>
        <barrel dimensions inner r = "233.0" outer z = "466.0" />
        <lavering n="120">
```

Data Availability

Latest data sets: October 2000

Archived at

SLAC (lcddata01.slac.stanford.edu)

S2 and L2 detectors

10000 events of udscb, tt, ZZ, WW, ZH Diagnostic generator requested samples also available

Previous data sets:

Archived at

SLAC (lcddata01.slac.stanford.edu) SLAC (sldnt0.slac.stanford.edu) PENN (sp05.hep.upenn.edu)

All accessible through JAS or FTP

Summary

- ? A functional full simulation package exists
- ? Changing detector models is easy
 - Serious detector design studies are possible
- ? Realistic reconstruction/analysis is possible
- ? Generating realistic parameters for a fast MC is possible
- ? Data sets of 10000 events for several processes already available

Future Plans

We plan to maintain the current simulation framework which defines and creates the geometry and data structure and replace the physics simulation package GI SMO with GEANT4.

We welcome collaboration with other groups making this transition.