Vertex Detectors for the Linear Collider

Jim Brau Univ. of Oregon

LCWS 2000 Fermilab October 28, 2000

J. Brau, LCWS 2000, October 28, 2000

<u>Physics Opportunities of</u> <u>the Linear Collider</u>

 Premier physics goals of linear collider characterized by heavyquark decays and small cross sections

- eg.

Higgs branching ratios

tt (usually 6 jets, 2 b)

tth (usually 8 jets, 4 b jets)

AH (12 jets with 4 b jets)

and other reactions

<u>Requirements of the</u> <u>Vertex Detector</u>

- Highly <u>efficient</u> and <u>pure</u> b and c tagging, including tertiary vertices (b→c)
- Charge tagging (eg. b/b discrimination)
- These goals are achieved by optimized impact parameter performance:
 - point resolution < 4 μ m
 - detector thickness < 0.2% X₀
 - inner radius < 2 3 cm</p>
 - good central tracker linking
- Also must take care with timing and radiation hardness

J. Brau, LCWS 2000, October 28, 2000

SLD has demonstrated <u>the power of a PIXEL</u> <u>detector in the LC</u> <u>environment</u>

- 307,000,000 pixels
- 3.8 μm point resolution
- pure and efficient flavor tagging at the Z-pole
 - ~ 60% b eff with 98% purity
 - > 20% c eff with ~ 60% purity
- We need a <u>pixel</u> solution
 - decision on option can wait
 - optimize options based on active R&D program

<u>Options under</u> <u>development</u>

- CCDs
 - system level demonstration with SLD (307,000,000 pixels)
 - R&D to advance performance
- Hybrid Active Pixels (HAPDs)
 - fast, rad-hard
- Monolithic APDs
 - fast, rad-hard

We need to pursue <u>all</u> of these options <u>vigorously</u> to ensure the best possible vertex detection at the LC

Session D3

- CCDs
 - C. Damerell (system development)
 - K. Stefanov (mech./ rad-hard devel.)
- Hybrid APDs
 - M. Caccia (prototype, charge sharing)
 - G. Alimonti ("3-D" detectors, bmp bnd)
- Monolithic APDs
 - G. Deptuch (prototype, beam test)
- Performance studies
 - T. Abe (heavy jet tagging)
 - J. Brau (Higgs BRs)
 - S. Xella (flavor tagging)
 - B. Schumm (aggressive scenarios)
 - M. Battaglia (3 Tev CLIC)
 - A. Miyamoto (flavor tagging)

J. Brau, LCWS 2000, October 28, 2000

<u>Charge Coupled Devices</u> (CCDs)

- Chris Damerell
 - system development
 - build on SLD experience with years of operation with 307,000,000 pixels
 - 5 barrel, 799,000,000 pixels with beampipe radius of 14 mm and 3 hit coverage to $\cos \theta = 0.96$
 - thinning ladders to 0.06% X₀
 - Readout architecture
 - column-parallel readout for TESLA
- Konstantine Stefanov
 - investigating near T_{room} use
 - mechanical design studies
 - rad-hard devel. to reduce CTI
 - improves 60-100 times
 - "will survive 10 years"

J. Brau, LCWS 2000, October 28, 2000

<u>Hybrid APDs</u> (Active Pixel Devices)

- Massimo Caccia
 - readout pitch > pixel pitch
 - prototype tested
 - charge sharing efficiency demonstrated
 - next step ⇒ beam test of improved device
- Gianluca Alimonti
 - first "3-D" detectors fabricated
 - leakage currents 1/4-1 nA/mm³ (T_{room})
 - low depletion voltage
 - active edges
 - Rad-hard XTEST2
 - bump bond yields good
 - next year \Rightarrow prototype system

<u>Monolithic APDs</u> (CMOS)

- G. Deptuch
 - prototype tested with beam
 - 64 x 64 pixel arrays
 - next year \Rightarrow increase size
 - ~ 10 cm
 - outstanding potential
 - rad-hard
 - high precision
 - ultra thin
 - low cost
 - issues to address
 - expand to system
 - power

Performance studies

- Bruce Schumm
 - aggressive scenarios (just to see)
 - improved resolution (\Rightarrow 1 μ m)
 - smaller beampipe (\Rightarrow 0.5 cm)
 - greater radial extent (\Rightarrow 11 cm)
 - thinner layers (and pipe) (\Rightarrow 0.06% X₀)
 - conclusions:
 - good central tracking vital
 - spatial resolution and beampipe radius lead to substantial improvements
- Akiya Miyamoto
 - flavor tagging
 - conclusion:
 - significant improvement with inner radius of 1.2 cm vs. 2.4 cm

Performance studies (continued)

- Toshi Abe
 - heavy jet tagging
 - ZVTOP installed into LCD simulation
- Stefania Xella
 - flavor tagging with neural net including ZVTOP
 - update for new TESLA geometry
 - future \Rightarrow ZVTOP3, vertex charge, dipole charge
- Jim Brau
 - detector parameters and Higgs BRs

Performance studies (continued)

- Marco Battaglia
 - 3 Tev CLIC
 - extreme energies lead to some very long decay lengths (several cm)
 - proposes counting tracks with pulse height information
 - demonstrates viability with simulation of σ (e⁺ e⁻ \rightarrow b b) determination

Summary of LCWS2000

- Progress continues to advance on many fronts
 - CCDs
 - R&D to advance the already demonstrated exceptional <u>system-level</u> performance
 - Hybrid APDs
 - prototypes with charge sharing understood
 - "3-D" detectors fabricated
 - Monolithic APDs
 - effort to capitalize on industry standards
 - first chip shows extraordinary promise
 - Performance simulations
 - tradeoffs becoming clearer

Future Directions

- Continue progress on all fronts
 - CCDs
 - Hybrid APDs
 - Monolithic APDs
- Performance simulations
 - Refine our understanding of the impact of detector trade-offs on physics performance
- We will be able to exploit the exceptional physics opportunities of the LC