Gianluca Alimonti

LCWS2000, Fermilab, Oct 26

Pair Monitor for LCs

- Large number of pairs/bunch created by QED process $\gamma\gamma \rightarrow e^+e^-$
- Same sign particle acquire Pt kick by EM field of on-coming bunch
- P_t and Φ distribution of deflected e^+ (e⁻) can be used to measure σ_x and σ_y of oncoming bunches

Kinematic Configuration of Pair 'Background'

Lab. frame

 $\bullet ||E| = |B|$

 \rightarrow no force from the co-moving bunch.

• $E(dyne/esu) = B(gauss) \sim 4 \times 10^7$ $\rightarrow r \sim 170 \mu m$ for p = 300 MeV/c.

$$(\sigma_z \sim 80 \mu m)$$

- For an incoming e⁺ bunch,
 e⁻ oscillates around the beam plane.
 e⁺ acquires a large p_t kick (vertical).
- Round beam \rightarrow no ϕ dependence, ϕ dependence $\rightarrow \sigma_y/\sigma_x$ ratio.

Hit Location on the Pair Monitor

$$\rho(\mathrm{cm}) = \frac{p_t(\mathrm{MeV}/c)}{3B_0(\mathrm{Tesla})}, \quad \theta = \frac{3B_0(\mathrm{Tesla})L(\mathrm{cm})}{p_z(\mathrm{MeV}/c)}$$

L: distance to IP

- ρ measures p_t and θ measures p_z .
- For $\sqrt{s} = 500$ GeV, $N_{\rm bunch} \sim 10^{10}$ and $\sigma_{x/y/z} = 260$ m/3nm/80 μ m,

 $p_{tmax} \sim 20 \text{MeV}/c \rightarrow \rho = 3.3 \text{cm} (2 \text{Tesla})$

- For L = 176 cm, $p_z \sim 350$ MeV/ $c \rightarrow \theta \sim \pi$.
- Look at ϕ distribution for $r = 5 \sim 7$ cm.

$$\label{eq:radius} \begin{split} r &\cong p_t \cong (\ N, \ (ln\sigma_x)^{\text{-1}}, \not \sigma_y \) \\ \text{Azimuthal angle } \Phi &\cong (\sigma_x / \sigma_y \) \end{split}$$

as a beam profile monitor

single Active Pixel Sensor double layer of silicon disks

pixel size	100 x 100 μm²
thickness	300 μm
inner radius	2 cm
outer radius	8.5 cm
location (z)	176 and 177 cm from IP

Measurement: position and energy deposit

Requirements for the Pair Monitor

- Detect a few 100 MeV electrons.
- 30 hits/mm²/train for $r = 5 \sim 7$ cm.
- \sim 50 kRad/year.
- \sim 70 keV threshold to reject X-rays.
- Identification of bunch in a train.
- Cover a circular area.
- Rate too high for a Si strip detector.
- CCD does not have TDC for each pixel.
- \rightarrow active pixel sensor.

Use $100 \times 100 \mu m^2$ pixel. TDC on each pixel. Gating to reduce occupancy and/or Multi hit TDC capability.

3D Pixel Sensor

Drift field parallel to the plane of sensor.

- Signal pulse is about ×10 faster than typical pixel.
- $V_{\text{depletion}} \sim 5 V$.
- Flexible geometry (e.g. trapezoid).
- Active all the way to the edge (no guard ring).

Detector Development

Good timing!

Reduction of distance between electrodes:

- Reduction of drift time
- Reduction of depletion voltage

Detector Development

...also after 55 Mev proton irradiation

Pair Monitor Prototype

A set of 3D sensors currently in fabrication @SNF. If all goes well, sensors available by the end of the year.

One disk showing the detector arrangement: top side facing the IP

One trapezoidal component of the disk: sensor facing the IP

Detector Results sensitivity

- Charge sensitive amp, 1 µsec shaping time
- "Strip detector" with 14 P-type electrodes tied
- 200 micron pitch strip to strip, 100 micron between electrodes within a strip

LCPIX0 Design Parameters

Sensor Thickness (100/300µm)

- Previous performance simulations based upon 300µm thick sensor, with 70keV threshold
- Need simulation for thinner device (background rejection)

• LCPIX0 Design:

- 100-300µm thickness (200-600 fF)
- Good timing performance
- Fit in 100 x 100µm footprint
- Original spec. 5-15ns timing resolution
 - think can do better (see simulations)
- Readout time target few ms (150 Hz trains)
- 70keV Threshold

LCPIX0 Proposed Architecture

LCPIX0 Pixel Cell

LCPIX0 Pre-amp gain

Possibility of using 100µm or 300µm thick sensor

LCPIX0 Timing

LCPIX0 Final Corrected Timing

With a time difference cut between T_{LT} and T_{HT} of less than 5 ns, a time resolution of better than 1 ns on the bunch timing can be reached

If occupancy is too high..

- •External gating to set a window on a train
- •Multi hit TDC on each pixel

℃SCA0 Timing Residuals (70keV, full train)

With a multi hit TDC the timing resolution is better than 3ns, to be compared with a bunch separation of about 3 (1.5) ns

LCPIX0 To Do List:

• Further simulation

- Next logical step is to check performance for a realistic energy/risetime distribution
- Results seem "good enough" for now:
 - no apparent problem with C_i
 - can set a clean, 70keV threshold
 - ns level resolution should be possible

LCPIX0 Design

- Rest of readout architecture
 - check settling time good enough to readout in a few ms for full-sized sensor
- Layout: to fit in 100 x 100µm footprint
- Possible submission by end 2000?

Conclusions

For the beam profile monitor we need a position dependent counting detector:

- Set a 70 Kev threshold on each ch.
- Have a small charge sharing

3D sensor seems appropriate and preliminary results look encouraging

The proposed electronics allows bunch identification in a train and a full read-out between trains.